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1. INTRODUCTION

The character of natural buoyant convection in rigidly contained inhomogeneous fluids can be

drastically altered by vibrating the container. Vibrations are expected to play a crucial influence

on heat and mass transfer onboard the ISS. It is becoming evident (especially as demonstrated

during the workshop held in ESTEC, September 98 [1]) that substantial vibrations will exist on

the ISS in the wide frequency spectrum.

In general, vibrational flows arc very complex and governed by many parameters. It is

almost impossible to correctly predict vibrational effects empirically; a sophisticated theoretical

approach and numerical modeling are therefore essential. Available flight experiment data clearly

show that, once initiated by "g-jitter", convective flows can exist for a long period of time in a

follow-up period of low gravity environment [2-7].

In many terrestrial crystal growth situations, convective transport of heat and constituent

components is dominated by buoyancy driven convection arising from compositional and thermal

gradients. Thus, it may be concluded that vibro-convective flow can potentially be used to

influence and even control transport in some crystal growth situations.

Control of convective transport continues to be an important aspect of crystal growth

research. A control of convection through static and rotating magnetic fields has been used by

several groups. In some cases, experimenters seeking to avoid buoyancy effects through use of

microgravity environments have expressed interest in the use of magnetic fields even under low

gravity conditions. However, there are many instances, whether due to materials properties or

other practical considerations, where the use of magnetic fields to induce stirring or suppress

flow may not be an option. In such cases, vibrational control becomes an attractive alternative.

Experimental results clearly show that vibrational convection can provide enhanced

nutrient fluxes[8-14]. Numerical modeling work at the Institute de Mdcaniques des Fluides de

Marseiile has confirmed that vibration can also be used to suppress buoyancy-driven flows.

Furthermore, it was shown that such suppression would be very effective at reduced gravity

levels of 10-4 g or less. This raises the exciting possibility that, under microgravity conditions,

specific controlled vibration can be used to mask undesirable "g-jitter" induced convective :

effects. Such g-jitter convection can be caused by quasi-steady residual acceleration [15,16] (due

to gravity gradient and atmospheric drag effects [7]), as well as transient and oscillatory

acceleration disturbances [18,19]. It is understood that high-quality low gravity environments can

only be provided for specific limited time intervals. For a space station, interruptions and

disturbances are inevitable consequences of docking, pointing maneuvers, astronaut activity, etc.,

and will limit the maximum attainable duration of high quality microgravity periods. While

active vibration isolation can be a partial solution, it will not solve the problems that might arise

due to the quasi-steady and very low-frequency acceleration components related to the gravity

gradient and other orbital factors. Alternatively, rather than using vibration to suppress low-

gravity flows, one might envisage using vibration to provide flow regimes tailored to particular

crystal growth experiments. These flows would not be accessible under terrestrial conditions due

to strong natural convection effects.

Bouyancy driven vibro-convective motion occurs when oscillatory displacement of a

container wall induces the acceleration relative to the inner fluid. The vibration may be viewed as

a time-dependent modulation of steady gravity in some cases.



In a closed container filled with a homogeneous fluid, the fluid moves as a rigid body

with a container. If, however, the fluid density is nonuniform, fluid motion may ensue. Of course,

the magnitude of this motion, depends on the orientation of the vibrational direction with respect

to the local density gradients. Note that similar to Rayleigh-Bemard configurations there may be

a "critical" threshold for the coupled vibrational frequency and amplitude, to cause convection.

Interestingly, in the case of a constant density fluid, the fluid motion may also take place at

angular vibration, axial rotational vibration o1" ACRT flows (caused by accelerated - decelerated

rotation of a crucible) due to inertia forces. For density gradients caused by temperature, such

motion is called thermo-vibrational.

It has been recognized for some time that oscillatory or pulsatile flow can significantly

alter the transfer of mass, heat and momentum in fluid systems [2,8-14,20-33]. For example,

analyses of heat transfer in laminar oscillating flows have shown that at high frequencies the

effective diffusivity, keff, behaves like keff - z_v2(cOVff2/L and, at low frequencies, keff

z_.x2(O3/2v1/Z/L,where v is the kinematic viscosity, Ax is the cross stream average of a fluid

element over half the period of the oscillation and L is a characteristic geometric distance (e.g.,

between the plates). It was also shown that heat transfer was most enhanced when the

characteristic heat transfer time was equal to half the oscillation period [24].

A great deal of work related to the theory of thermo-vibrational convection has been

carried out by Russian research groups. The main focus has been on thermo-vibrational

convection starting with the work of Zenkovskaya and Simonenko [34], who first obtained the

equations of thermo-vibrational convection in a high frequency limit. Since then, there have

been many theoretical [2,35-42] and some experimental (e.g., [12,13,43]) studies of the stability
of thermo-vibrational flows. One of the main conclusions that can be drawn from these works is

that for vibrations with specially chosen axes, the natural buoyancy driven convection which

would prevail in the absence of vibration clan be suppressed at certain frequencies and amplitudes

[39]. This has recently been analyzed in more detail [44] using the full equations of motion and

Gershuni's time-averaged equations. The possibility of using vibration as a means of controlling

and suppressing convection was confirmed. A comprehensive introduction to vibrational

convection and other time-dependent modulation can be found in reference [45].

The problem of vibrational convection arising due to other buoyancy sources, such as

compositional density gradients, has also been approached. The onset of purely solutal and
thermosolutal convection has been examined for horizontally stratified layers subject to vertical

vibration [46,47].

There are several examples of experimental work concerning the influence of vibration

on crystal growth from melts and solutions [28-37]. These works involved a wide range of

intensities and frequencies (including ultrasound). Experimental attempts to understand how

low frequency vibrational stirring might be used to effect rapid mixing in melts and solutions

have been made by Liu et al. [54]. The influence of low frequency vibration on interface location

and shape during Bridgman growth of cadmium telluride was examined by Lu et al. [55]. Other

effects of low frequency vibrational convection on crystal growth include the increase in local

perfection of binary compound semiconductors [57], changes in interface shape [30], and the

facetting of germanium crystals [58]. The elimination of striations in indium antimonide may

also be due to the formation of a stationary melt flow due the torsional vibration [59].

Experimental results also clearly show that in certain cases vibrational convection can

provide enhanced nutrient fluxes during the solution growth of Rochelle salt and potassium

dihydrogen phosphate (KDP) [60,61]. Zharikov [62, 14] identified a characteristic low



frequency(< 100Hz) vibrationalflow regimein theliquid neara growingcrystal. Theform,
dimensionalityandintensityof theflow werestudiedandtheeffectsof vibrationonheatand
masstransferwereanalyzedfor thecaseof CzochralskiandBridgmangrowthof sodiumnitrate
(NaNO3). Heshowedthatthevibrationcoulddrasticallyalterthecharacterof flow and
concludedthat vibrationcouldexertastronginfluenceon transportandimpurity incorporation
andlocally influencegrowthkinetics.

UspenskiiandFavier[63] consideredtheinteractionbetweenhighfrequencyandnatural
convectionin Bridgman-typecrystalgrowth.Theyusedtheaveragethermo-vibrationalflow
equationsto theoreticallyexaminedtheproblemof suppressingnaturalconvectionusinghigh
frequency(- 104Hz) low amplitudevibrationandcomparedtheefficiencyof vibrational
dampingto thatof magneticfield damping.Usingthephysicalpropertiesrepresentativeof
GaSb,GaAS,etc.,theyfoundthatunderterrestrialconditions,(for highelectroconductivities)the
magneticfield is moreeffectivethanvibration in dampingflow in thehorizontalBridgman
configuration. In contrast,for verticalBridgman,lateralvibrationwasmosteffective.The
horizontalvelocitydecreasedby afactorof 10andtheverticalvelocityby about20. In
comparisona 1Tesslaverticalmagneticfield only resultedin afactorof 6 decreasein maximum
velocity. Theyspeculatedthatit mightbepossibleto combinemagneticfieldswith vibrationto
reachoptimaldampingconditions.

Vibrational flows are very complex and governedby many parameters.Here is an
incomplete list: Pt, Ra, Ra,.., Ra_., c_., oJ, L/R (Prandtl, Rayleigh, vibrational Rayleigh,

compositional Rayleigh numbers, o_, = Ra,./ Ra_,,., and aspect ratio), 0_, a (angles between

gravity vector, vibrational direction and the axis (temperature gradient)), E, RolL (Ekman

number, relative distance to the center of rotation for angular, rotational vibrations, a type of

vibrational action) and others. The range of parameter values is very wide: Pr is of the order of

0.01 for semiconductors, and of the order of 10 for oxide melts; gravity variation result in Ra

values of 106 to 10 m on a ground to 1- 103 in space, and similar for Ray ; the frequency range is

from 0.01Hz to 100Hz and higher, etc. (see Table 1).

Farooq and Homsy [41] examined in depth the 2D case of a rectangular cavity, but an

understanding of 3D thermo-vibrational flows has not yet developed. Therefore, a sophisticated

theoretical approach and numerical modeling" together with experimental research are essential

for the investigation of vibrational control of convective flows.



Table 1. Typical material properties for semiconductor and oxides melts, and

nondimensional problem parameters for numerical experiments

Dynamic parameters

Frequency 0.001 ... 1 ... 100 Hz

Angular amplitude e = 0 ... 15 ... 45 °

Geometry

Height L = 2 to 10cm
Diameter D = 1 to 2 cm => L/D=I0 to 5

Material properties

Pr

Viscosity

Diffusi vity

Thermal diffusi vity

Thermal expansion coeff.

0.01 (Ge, Si)... to 15 (oxides)

v = 1.3e -2 cm2/s

D = 1.3e -4 cm2/s

k = 1.3e -1 cm2/s

[3 = 2.5e -4 K-1

Body forces and related parameters

Gravity

Temperature gradient

Magnetic field

g = 1 ... 0.01 ... l0 -5 ... 10-6g 0

G = 25 to 100 K/cm

Ha = 0 ... 2,000 ... 20,000

Nondimensional parameters

[3 AT gL 3 ,, [3 AT g220L4V
Pr =-,Ra - ,Kan -

K KV K'V
,E-

Rav, L/D, h/R, Ha, Sc=v/D, Rat*,

V

g20L 2'

01 = _/L2K:

Vibration types:

translational, circular polarized, angular, g-jitter



2. MODEL OVERVIEW

2.1 Heat and Mass Transport in Bridgman melt configurations

The research involved a numerical and experimental investigation of vibro-convective

transport regimes applied to the control of convection and transport during crystal growth by the

Bridgman technique. A typical Bridgman crystal growth configuration is shown in Fig. 1. This

work was motivated by recent developments in the understanding of low frequency'therrno-

vibrational convection, results from recent Space Flight experiments on "g-jitter" induced flows,

and by current and planned experimental work at Stanford University and the General Physics

Institute, Russian Academy of Sciences in Moscow [ 1-5,40,64,65]. Although in principle, the

theoretical research described below can be carried out independently of a particular

experimental program, close collaboration with experimental groups created a firm practical

foundation.

We investigated five types of vibro-convective flows caused by translational, angular,

rotational vibrations (these results may be extended also for ACRT flows [92,94], due to

accelerated-decelerated rotation of a crucible-tank), and flows due to "g-jitter". The flow regimes

were investigated by applying each type of vibrations to different materials to find regimes

beneficial to control or suppress of convection.

In section 2.2, the physical model and basic equations are described. The equations for

translational, polarized vibrations and "g-jitter" are given in section 2.2.2. Section 2.2.3 describes

the equations for angular, rotational and ACRT type ;¢ibrations. Solution methods are discussed

in section 2.3.

The basic problem analyzed was the suppression or control of buoyancy-driven

convection in melts during plane-front directional solidification. The work involved the analysis

of vibrational interaction with natural convection and its effects on the temporal evolution of

melt temperature and composition during growth (section 3). The philosophy behind our

approach is to use numerical modeling in two ways: gynergistically, with experimental

developments, and as a predictive tool. The synergism with experiment allows careful

interpretation of both experimental and modeling results for what can be a highly non-linear

physical situation. To explore regimes and system properties currently inaccessible to the

experiment, the model was also used as a predictive tool. Initially guided by previous results

[34-67,70,73-76], the work involved an extensive investigation of vibrational flow regimes with

and without the presence of natural buoyancy-driven convection. As we progressed toward our

goal of defining the applicability of vibrational control of convection, we compared the ability of

vibration to suppress flow with that of a magnetic field.



2.2. Theory and numerical modeling

2.2.1 The physical model

The plane-front directional solidification of a binary solid from a melt of initial composition c

in a cylindrical ampoule of radius R was considered. Fig. 1. shows a physical model.

Calculations were made for two basic physical set-ups.

The first involves purely 3D thermo-vibrational convection in a differentially cylindrical

cavity with no consideration of solidification. These calculations were performed in conjunction

with the flow visualization experiments, ongoing experiments conducted by R.S. Feigelson at

Stanford University.

The second setup is closer to a practical solidification situation and involves explicit

consideration of plane-front solidification in a long cylindrical ampoule. Solidification takes

place as the ampoule is translated along a temperature gradient. [:or this model system,

translation of the ampoule is simulated by supplying a doped melt of bulk composition c_ at a

constant velocity Vm at the top of the computational space (inlet), and withdrawing a solid of

composition Cs = Cs(X,t) flom the bottom. The crystal-melt interface is located at a distance L

from the inlet; the radius of the ampoule is R. The temperature at the interface is taken to be Tin,

the melting temperature of the crystal, while the upper boundary is held at a higher temperature

Th (Fig. 2). On the ampoule walls the heat transfer between the furnace and the ampoule will be
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Fig. 1 The Bndgman-Stockbarger method in which
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profile and Tm is the melting temperature



modeledusinga suitableheattransfercondition.Theheatingprofile includesalong isothermal
hotzone.In thiscase,thermo-vibrationalconvectionin theupperportionof themelt will be
weakor nonexistent.Thus,theeffectof our implicit neglectof theno-slipconditionat thetopof
arealampoulewill benegligible.

Boththermal,solutalandthermo-solutalconvectionwereconsidered.For thermo-
vibrationalconvectionweconsideredtwo typesof vibration,translationalandangular.Theframe
of referencefor thecalculationsis anexperimentalframeattachedto thewalls of theampoule.
Thus,dependingon thetypeof displacementinducedby thevibratingwalls,theequations
governingmomentummassandheattransport will take on a different form. In section 2.2.2 we

consider translational and polarized vibrations, followed by angular and rotational vibration in

section 2.2.3.

2.2.2. Translational, polarized vibration and "g-jitter"

Translational vibration corresponds to a linear displacement such as, for example, u =

dlcos(ot, where dl is a real vector con'esponding to the displacement amplitude. Thus, a point is

displaced back and forth upon the same line. Polarized vibrations are characterized by a

displacement u = Re[de -iwt} where d =dl - i d2 (see Fig. 3). Here the instantaneous vibration

direction rotates in the polarization plane defined by the real vectors d/and d2. A case of

orthogonal equal length vectors d/and d2, the circular polarized vibration, is called a CVS

method [32]

z

l d = d 1 -i d 2

zl zl

d

'(9

Y _ Y Ix

g g
a b

Figure 3: Translational vibration (a), dl or d 2 = 0, and polarized vibration (b), dl,d2 g: 0; q_ is the angle

between gravity vector and axis of ampoule, O'.is the angle between direction of vibrations and axis of ampoule

For a reference frame fixed to the vibrating ampoule both these types of vibrations result

in equations of the following form [17,46,47]. The momentum and continuity equations are

3V
--+(V.V)V+Vp-PrV2V=RaPr(O+cTc)k + Ra, Pr(®+c_.c)f(x,w,t) (1)

V. V = 0 (2)

while the continuity and heat - mass transport equations are:

10



dO
--+ V .V® = V2® (3)

dc
--+ V . V c = Pr Sc-lV 2c (4)
&

where length, time and velocity have been scaled by Ro, RO2/K and ,v/Ro, where RO is the radius

of the ampoule and K is the thermal diffusivity, k is a unit vector in the direction of gravity.

The Prandtl, Schmidt, Rayleigh and solutal -thermal buoyancy ratio are given by

Pr= v Sc= v flA TaR.=..a
_, Ra-' VK

where [3 and [3s are the thermal and solutal expansion coefficients and AT, g, v and D are the

characteristic longitudinal temperature difference in the melt, gravitational acceleration,

kinematic viscosity and solute diffusivity, respectively. The dimensionless number Ray and Ra,_

are vibrational Rayleigh numbers defined as

Rav= d a_2flA TR a Ra_c = d co2/5'¢1 cFi°
VK ' VK '

For the solidification calculations, the following boundary conditions apply at the crystal-melt

interface.

O=O,V. N= Pe, VxN=O (5)

dc
- PeScPr-l(l- k)c

o_n

where:Pe = VmR/k is the Peclet number, k is the distribution coefficient and N is the unit vector

normal to the planar crystal melt interface. At the top of the ampoule,

O=LV.N=Pe, VxN=O (6)

- PeScPr-l(c- l)
3n

where, due to the fact that we consider the top of the computational space as an inlet, the

last condition represents conservation of mass. Finally, on the ampoule walls we have

V-N = PegSc Pr-L V.ew = O, Vr)ew = h(O- @a(Z)), VC.ew = O, (7)

where O a(Z) is the heating profile, h is a dimensionless heat transfer coefficient and ew is

normal to the walls.

II



The body force f(x, t) = n sin(_t)for translational vibration, where n is direction of

vibration (Fig. 3b); f(x,t) = [cos(E_ t), sin(_2 t), 0] T for polarized vibrations and f(x,t) = Jg(t), the

3D vector of "g-jitter" microaccelerations (e.g. measured SAMS microacceleration data or the

numerical "g-jitter" model).

Vibrating imnwrsed body. The application of vibration through placement of vibrating

bodies at specific locations in the melt can also be modeled as a variant of the translational and

polarized vibration problems.

Average equations for small amplitude vibrational di,_7)lacements

The dimensionless groups Ray and Raw in equation (1) should not be confused with the

vibrational Rayleigh number Rag of Gershuni [34-39,45-76], which arises for monochromatic

vibration as follows. If the amplitude ]dJ of a sinusoidal vibration is sufficiently small, i.e., ]dJ <<

rain( R/_AT, R/[3coo), the velocity, temperature and concentration fields may be represented as

the superposition of mean (averaged) fields and small oscillating components [34,74]. In this

case, application of the averaging method [45] yields

-_--_-+ (o.V) _ =- Vp+Pr V20+ PrRa(Cg+c_C) k +PrRag (w.V)[(O+ % C') n - w], (8)

V. _ = 0, (9)

where Rag = (13o) d RAT)2/Kv is Gershuni's thermo-vibrationai Rayleigh number and Otc=

_3cC_o/6AT is the ratio of the solutai and thermal buoyancy. The vector w is the slowly time-

varying part (may be stationary) of the oscillating part of the velocity field and satisfies

-- 2..--

I7. w = 0 , I7a w = V[(® + o_ _C)]An , (10)

and is the solenoidal part of the vector field (O+ (z¢ C_)n = w + Vq_

and solute fields satisfy

and

Ot + = '
.

• The average temperature

(11)

OCo (v- V) L_ = scPr---(--VC (12)-'t + "

The boundary conditions for the averaged equations are of the same form as (4)- (8)

and the component of w normal to the boundaries must be equal to 0 on the ampoule walls and

equal to Pe at the top of the ampoule and at the melt-crystal interface. For thermally buoyant

natural and vibrational convection we simply set _ = 0 and for no solidification, Pe = 0.

For the problems under consideration, the averaged equations result in the steady-state

equations. Our recently developed novel methods of numerical bifurcation theory [69] are

suitable for the analysis of stability and onset of vibrational flow regimes.

12
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Figure 4: Diagram of the system for angular vibralion to be modeled (a), x* and x are the two coordinate syslems

related by (10). The container is rotated at an angle T(t) = F_ silt ( -Q0 t) about a center of rotation at x* = 0.

Axial vibrations and ACRT (b), are rotation about the axis z, the angle T(t) = _ si, ( _o t) for vibrations or

T= tP(t) (selected ACRT law).



2.2.3. Angular, rotational vibration and ACRT flows

The equations of motion for angular and rotational vibrations take on a more complicated form.

Angular vibration. Let x* = (x 1", x2*, x3*) be a fixed Cartesian coordinate system (see Fig. 4a). A

container of length L is subjected to an angular vibration q(t) in the x l*-X3* plane. The position

vector to the mass center of the cylinder is parallel to the side of the cylinder and is given by

q* = R0[- sin 0i_ + cos 0i_], (13)

where R0 is the distance from the origin 0* to the mass center of the cylinder and

0(t) = Esin Not, (14)

where t is time.

Rotational vibration andACRT (Fig. 4b). The container is rotated about the axis z, the angle 7yt) = e

sin (f_o t) for vibrations or T=T(t) (selected ACRT law, see [77]); _o is tile angle between the gravity

vector and axis of ampoule. The ACRT type of vibration was not in the original research plan. We

just note here, that the software developed in the frame of current research is capable for the

investigation of ACRT flows without any modifications.

In the reference frame moving (rotating) with the ampoule the momentum equation has a form

oN

3t
--+(V-V)V+,o IVp-vV2V =yirg+((oxq)xa)+2Vxco+qx_ (15)

where r_o= [0, e _0 cos ( _o t), 0] T for angular vibration and (o = [0, 0, e _o cos (_2o t)] T for rotational

vibration and o)= [0, 0, dy(t)/dt ]T for ACRT. The problem has the following nondimensional

determining parameters: _ = fg0L2/K, the dimensionless frequency and 0 = R0/L; the Prandtl, Pr,

Rayleigh, Ra, vibrational Rayleigh Raft, and Ekman, E, numbers are

pr=V Ra -13ATgL 3 Raa 13ATffg2L 4 E- v
_" Kv Kv -QoL-

where 13, v, g and K are the coefficient of thermal expansion, kinematic viscosity, gravitational

acceleration and thermal diffusivity, respectively. Note that, the system of equations (15) differ from

the usual equations in the absence of rotation in that two additional terms are present in each

equation; the Coriolis term which is proportional to ePr/E, and the centrifugal term which is

proportional to e2ORa_Pr at x = 0 and varies with position in the ampoule. The importance of the

latter term depends on the dimensions of the amplitude of the angular vibration, e, and the ratio O.

Note that the centrifugal terms give rise to periodic forcing that fluctuates about a mean value at twice

the period of the angular vibration.

Since the above system of equations has not been well studied, we used a conservative

approach for the study of angular vibrations and confineed our investigation to a parametric study of

flow regimes and transitions for thermo-vibrational situations only, without solidification.

14



2.3. Solution method and software

The equations are solved in primitive variable form (velocity-pressure, temperature, etc.) using a

Finite Element Method package developed by the Principle Investigator [65-67,71-73]. The package,

FEMINA/3D, is designed to solve 2D and 3D problems and includes four basic groups of modules

each distinguished by its function: automatic 2D/3D mesh generation, optimal renumbering or

matrix-bandwidth/front optimization, a computational part including efficient algebraic solvers and

visualization/graphics software. The novel methods developed and implemented allow a use of

efficient, same order finite element approximation, for velocity and pressure, and robust iterative

solution techniques of a high accuracy (up to 10-'_).
The FEMINA/3D code has overcome most of the disadvantages associated with the rnemory

requirements of FEM methods by using an efficient combination of solution methods. These include

the iterative solution of large non-symmetric algebraic systems using iterative 1DR-CGS type

techniques [72,82-84,91] with preconditioning by incomplete decomposition of high order in a

compact matrix storage scheme. That reduced the computation time by one to two orders of

magnitude and memory requirements by an order for 3D flows over currently available commercial

codes (e.g. CFD2000). Typical solution time for a transient 3D problem with a 200,000 unknowns is

a couple of hours on a SGI 02 workstation (much faster on CRAY-C90); solution time for a 3D

steady convective flow problem is a couple of minutes.

FEMINA/3D simultaneously considers the continuity equation directly with the momentum

equations at each solution step. This eliminates many problems related to boundary conditions and

places only slight limitations on the time step size for transient problems (these limitations are related

to the physical nature of the problem rather than the numerical method itself).

The package has been carefully verified by comparison of numerical and analytical solutions

as well as comparison with results obtained by other methods and experimental data for 2D and 3D

viscous flows and thdrmal convection problems [65,67,73,86,91].

A wide range of problems has been investigated using this package, including time-dependent

fluid flow (64, see also [72] and references therein) and mass and heat transfer in complex geometries

[64,78,79]. Other practical applications include thermal convection and transport during crystal

growth processes [33,40,79,80,81 ] and other engineering problems.
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1 INVESTIGATION OF VIBRATIONAL CONTROL OF CONVECTIVE FLOWS IN

BRIDGMAN MELT CONFIGURATIONS

Results of the investigation of vibrational control of the Bridgman crystal growth technique have been

published in journal papers, conference proceedings and presented at conferences, workshops and

colloquia, listed in Section 6.

A summary of results from our publications [33,40,64-70,86-92,99] is presented below.

(i) An efficient numerical code, a main research tool, for the modeling of three-dimensional

thermal-vibrational convection for several types of vibrations has been developed by the PI based on

the finite element code FEMINA/3D created by the PI [71,72]. The code was carefully tested on

experimental benchmarks, and published numerical data for a variety of 2D and 3D viscous flows and

thermal convection problems [65,67,73]. The novel methods developed and implemented allow a use

of efficient, same order finite element approximation, for velocity and pressure, and robust iterative

solution techniques of a high accuracy (up to 10-9). This reduced the computation time by one to two

order of magnitude and memory (by 8 times less) for 3D flows over currently available commercial

codes (e.g. CFD2000). Typical solution time for a transient 3D problem with 200,000 unknowns is a

couple of hours on a SGI 02 workstation; solution time/or a 3D steady convective flow problem is a

couple of minutes [86,90,91]. A new efficient numerical continuation approach, based on the

multiquadric method, for the stability and bifurcation analysis was developed [69, 89].

(ii) A parametric study of the general 3D buoyant-vibrational flow in a Bridgman growth

system has been performed. This includes the characterization of flows induced by translational,

rotational and circular polarized (also known as CVS, after R. Feigelson [32]) vibrations under

selected microgravity and Earth conditions for typical semiconductor and oxide melts [33,40]. A

typical flow pattern for translational vibration is presented in Fig. 5. Even in 0g we have found flows,

i.e. characterized by a fluid flowing up one side and down the other (relative to the Figure). The

temperature distribution remain almost unperturbed for semiconductor melts (due to the low Pr

number), therefore a separate plot for AT is provided.

Vx Vy Vz P '1" A T IlVll

Figure 5. Typical instantaneous 3D melt flow patterns for translational vibration at 0g, Ra=O, Ra,,=7.25 • 104, (0 = 100Hz,

lateral vibration: velocity components Vx,Vy,Vz, pressure P, temperature T, temperature disturbance AT, and velocity
module IVt. Black color designate the minimal value plotted, white one - the maximal value

The angular orientation between the direction of vibration and ampoule axis (with imposed T-

gradient) has been studied for translational vibrations. When that angle is zero, there is no influence

16



of thevibration on a flow evenif vibrationalRaleighnumberis very high. The maximumobserved
effectcorrespondsto anangleof 90degrees.

Theflow patternsfor rotationalvibrationsflow regimesarepresentedin Fig. 6. Maximal
valuesof flow velocityareobservedat theendof theampoulewhich is morefar from therotation
origin.

Vx Vy Vz ':r A T [IVI I

Figure 6. Typical instantaneous 3D flow patterns for angular vibration at 0g, Ra=O, Re,=4.6. l05 , (,) = 100Hz, lateral

vibration: velocity components V_,Vy,Vz, temperature T, temperature disturbance AT, and velocity module [V].

We found that both translational and angular vibration can cause average melt flow for a range of

parameters typical of practical semiconductor and oxide growth. For a given vibration amplitude and

frequency, angular and circular polarized vibrations result in more intensive melt flow than

translational ones.

(iii) The influence of vibrations on the heat - mass transfer becomes much more significant for

oxide melts due to their lov_ thermodiffusivity (Prandtl number - 10, that is four _ders higher than

for semiconductors). These flow patterns are shown in Fig. 7 for the case of circular polarized

vibration.

Vx Vz T C IV] A T

Figure 7. Instantaneous 3D flow patterns for circular polarized vibration, Ra = 7.25 • 10 _, Ra,. = 7.4 • 106, co = 10Hz :

velocity components V_, Vz, temperature T, concentration C, velocity module [V], and temperature disturbance AT.
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Initially (at the time = 0) the species concentration was c=l at the lower quarter of the cylinder and c

= 0 elsewhere. The evolution of the species concentration (process of mixing) is shown in Fig.8

together with minimum and maximum values of velocity components. Complete mixing

\

\

....'i_'¸........

L

i¸ ,/,/k/,L,L{./J'L/ /:;'u'_'/:'/'Y/'_,: _L/L' '/'_

Figure 8. Temporal evolution of concentration C (left, min. and max. of C) and velocity extremums (V_, center, and V_,
right) for circular polarized vibration, Ra=7.25. 103, Ra,.=7.4.106, (o = 10Hz.

occurs in about ten seconds. The heat transfer (local Nusselt number at the top and the bottom) is also

enhanced by about an order of magnitude. If the frequency of vibration is higher, of the order of

100Hz (for fixed Ra,.), then the change of heat and mass transfer due to vibrations becomes less

significant. That corresponds to the experimental obserw_tions by R.Feigelson [32,74]. The

visualization of results of numerical modeling, the 3D movies of vibrational flows, heat and mass

transfer are available on the Web, http://uahtitan.uah.edu/alex/cvs_numeric.htmi for some cases.

(iv) The oscillation of flow values, in addition to a drive frequency, shows co/2 subharmonic

in the pressure field. Similar experimental spectra was observed by M.Schatz [75]. With the

increasing of vibration intensity, additional oscillating flow frequencies (superharmonics) appear.

(v) The results on the influence of forced vibration on g-jitter induced flows are available

[64]. G:jitter was implemented using SAMS microacceleration data from the USML-2 (Fig. 9).

Initially the translational vibration were applied in the direction parallel to the ampoule axis (T-

gradient), trying to damp flow variation with time caused by g-jitter (predicted by the averaged

equation theory [45]).
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Figure 8: G-jitter microacceleration SAMS data from USML-2 mission, used in numericalsimulations.
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While the flow variation with time becomes more regular, a suppressing temporal variation of the

melt velocity due the g-jitter was not succeeded. Alternatively, the use of the same amplitude

vibration in the direction orthogonal to the ampoule axis induces intensive thermal vibration flows

and flow disturbances due to g-jitter become practically not visible. Nevertheless recent results show

that axial translational vibrations have a tendency to prevent the development of a strong stationary

vortex cell, that otherwise may occur.

(v) Convective flows in a semiconductor melt with strong static axial magnetic field applied

were investigated, and we compared three different numerical methods for the solution of thermal

convection [87]. Although the generated flows are extremely low, the computational task is very

complicated because of the thin boundary layer at high Hartmann numbers, Ha >> 1. We considered

melt region geometry with different aspect ratios, and gravity direction aligned and misaligned with

the magnetic field vector. The comparison shows that the finite element approach with regularization

can obtain stable and reliable solutions in a wide range of Ha number, up to 104. These results

compare favorably with asymptotic solutions [99,100]. Numerical solution of these problems by

available commercial CFD codes may be not efficient or not possible at all.

(a)
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Figure 9:Stream function for aligned (a) and (b) misaligned by 0.5 degree gravity and magnetic field directions, Ha=2170

(B = 5T1) (c) Vertical velocity profile Vy(x) at y=0.25H, x in [-1,1], (note boundary layer), Ha=2.2 l0 _, B = 50 TI (d)

Detail of the velocity profile (c) in a boundary layer, x from -l to -0.99. (e) Summary of the magnetic field

suppression of melt flow: maximum value of horizontal velocity magnitude versus magnetic field B for aligned and

misaligned by 0.5 degreemagnetic field and gravity vectors. Predicted theoretical asymptotic dependence for the

velocity Vmax-Ha -2 is observed from about B=0.5 T1. Results are obtained with our FEMINA/3D code for Ha number

up to Ha=2 104, other tested in methods did not provide acceptable results or failed for Ha > 100
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The efficiency of the convective flow suppression by axial magnetic field at lg is very sensitive

to misalignment of the gravity vector with ampoule axis direction. For example, in case of

misalignment by 0.5 deg., the axial temperature gradient (which was stabilizing) becomes a main

driving force for the thermal convection, resulting in the increase of convection velocity

magnitude by a factor of 3 to 10.

4. CONCLUSIONS

• We verified and confirmed the validity of the Boussinesq model for semiconductor and

oxide melts under microgravity conditions for all the flow regimes under consideration.

• Powerful tool, the 3D finite element code FEDIMA/3D has been developed. Efficient

numerical methods for 3D thermal vibrational convection are implemented; carefully tested:

good agreement with experimental data is obtained. This tool is capable for high accuracy

modeling of 3D thermo-vibrationa[ convection,and flows under strong magnetic field in a wide

range of problem parameters.

• A parametric study of the general buoyant-vibrational flow in a Bridgman growth system

was performed for both semiconductor and oxide melts.

• The influence of angle between a direction of vibration and ampoule axis (temperature

gradient) has been studied for translational vibrations. Zero angle - no influence of the vibration

on a flow. The maximum effect corresponds to an angle of 90 degrees. Here transport is

significantly enhanced.

• Influence of g-jitter and forced vibrations has been analyzed.

• All kinds of vibration can cause average melt flow for a parameter range for praclical

semiconductor/oxide growth. Rotational (angular) and polarized vibrations result in more

intensive melt flows than translational ones. Typical flow patterns for different flow regimes

have been identified.

• The vibrational influence is stronger for oxides than for semiconductors.

• The frequency range was identified where vibrational influence efficient.

• Suppression of convective flows in a semiconductor melt with strong static axial

magnetic field applied were investigated. High sensitivity of magnetic field direction and gravity

vector misalignment has been found and analyzed.
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Abstract

It is generally recognized that oscillatory, or pulsatile, flow significantly alters the transfer of mass. heat and

momentum :n fluid svstems. A numerical investigation of thermovibrational buoyancy-driven flow in differentially'

heated cylindrical containers is presented as part of a study of thermovibrational transport regimes in Bridgman-type

systems. The formulation of a physical and mathematical model for this problem is outlined and its application to the

study of investigation of thermal vibration:d flows is discussed. Three types of vibration are considered: translational,

circularly pokmzed and rotational. It is demonstrated that forced vibration can significantly affect ttows that have been

induced b.v J-jitter and selected resuhs for the cases of longitudinal and lateral vibrations are presented. ,if. 2000 Elsevier
Science B.V. All ri¢hts reserved
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1. Introduction

The character of natural buoyant convection in

rigidly contained inhomogeneous fluids can be

drastically altered by vibration of the container.

For certain experiments and operating conditions,

vibrations are expected to have a significant influ-

ence on heat and mass transfer onboard the Inter-

national Space Station (ISS). Furthermore. it

appears _hat _see for example, the recent ESTEC
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Workshop proceedings I-1-1) y-jitter vibrations wil

exist on ISS over a wide range of frequencies.

In general, vibrational flows are very comple:

and are governed by many parameters. This com

plexity makes it almost impossible to correctly pre

dict vibrational effects empirically. Thus. a carefu

theoretical approach combined with numericr

modeling is essential. Available flight experimet

data clearly show that, once initiated by "9-jitter

the effects of convective flows can persist for loc

times even when the 0-jitter disturbance (and coi

sequent flow) were short-lived [2-7].

In many terrestrial crystal growth situation

convective transport of heat and constituent con

ponents is dominated by buoyancy-driven conve

tion. Control of convective transport continues

0022-_;2"s , ";-_:c (ront matter ( 20_/_t Elsevier Science B.V• All rights reserved.
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be an important aspect of crystal growth research.

Several groups are actively pursuing control of

convection using static and rotating magnetic

fields. In some cases, experimenters seeking to

avoid buoyancy effects by conducting their experi-

ments in microgravity environments have ex-

pressed interest in the use of magnetic fields even

under low gravity conditions. However, there are

many instances, whether due to materials proper-

ties or other practical considerations, use of mag-

netic fields to induce stirring or to suppress

unwanted flows may not be an option. Magnetic
fields cannot be used for flow control in melts and

solutions that are poor conductors. Flow sup-

pression through vibration or vibro-convective

mixing may offer an attractive alternative in such

cases.

It is understood that high-quality low-gravity

environments can only be provided for specific lim-

ited time intervals. For space stations, interruptions

and disturbances are inevitable consequences of

docking, pointing maneuvers, astronaut activity,

etc.. and will limit the maximum attainable dura-

tion of high-quality microgravity periods. While

active vibration isolation can be a partial solution.

it will not solve the problems that might arise due

to the quasi-steady and very low-frequency acceler-

ation components related to the gravity gradient

and other orbital factors. Alternatively, rather than

using vibration to suppress low-gravity flows, one

might envisage using vibration to provide flow re-

gimes tailored to particular crystal growth experi-
ments.

Recent work has shown that the character of

natural buoyant convection in nonuniformly

heated, riNdly contained inhomogeneous fluids can

be drastically altered by vibration of the container.

A review and relevant theoretical and experimental

research can be found in publications [-1-13]. Thus.

vibrational, induced flow can potentially be used to

influence and even control transport in some crys-

tal growth situations. A practical quantitative un-

derstanding of vibrational convection as a control

parameter in crystal growth situations is currently

not available. The objective of the work is to assess

the feasibility of the use of vibration to suppress, or

control, convection in order to achieve transport

control during crystal growth.

2. Theory and numerical modeling

Buoyancy driven vibro-convective motion oc-

curs when oscillatory displacement of a container
wall induces the acceleration of a container walI

relative to the inner fluid. The vibration m,'tv be

viewed as a time-dependent modulation of steady

gravity. In a closed container the fluid will move as

a.rigid body with a container. If, however, the fluid

density is nonuniform, fluid motion may ensue. The

magnitude of this motion, of course, depends on the

orientation of the vibrational direction with respect

to the local density gradients. Note that, similar to

Rayleigh-Benard configurations, there may be

a "critical" threshold for the coupled vibrationa;

frequency and amplitude, to cause convection

Interestingly, it should be noted that in case of c

constant density fluid subjected to spatially non.

uniform vibration, fluid motion can also occur tfol

example, angular vibration [11]).

To properly investigate influence of transla

tional, circularly polarized and rotational (angular

vibration necessitates the use of the full 3D equa

tions governing the transport of heat. mass an_

momentum. Selected examples of our ongoin

work on this topic are outlined below.

2. l. The physical model

We consider a purely thermo-vibrational cor

vection in a differentially heated cylindrical cavit
with no consideration of solidification. The fluid i

taken to be Newtonian, with a constant viscosi

and the Boussinesq approximation is assumed 1

hold. The validity of this approximation is di

cussed in Section 3. The calculations were pe
formed for identification and characterization

thermovibrational flow and are part of an ongoi_

project involving flow visualization model expel

ments being conducted by Feigelson [10].

2.2. Mathematical model for translational vibrati_

Translational vibration corresponds to a line

displacement such as. for example, u = d cos_

where d is a real vector Wing the displaceme

magnitude and _o is the frequency. In this case t

ampoule is displaced back and forth upon the sa_
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Fig. 1. Translational vibration (a), dt or d2 = 0, and polarized vibration (bL dl, d,. 4: 0; q0 is the angle between gravity vector and _he

ampoule axis. x is the angle between the vibration direc::on and the ampoule axis•

line. Polarized vibrations are characterized by

a displacement u = Re{de i'_'} where d =dt -- id,

(see Fig. I). Here the instantaneous vibration direc-

tion rotates in the polarization plane defined by the

real vectors d t and d2. A sketch showing both

translational and circular polarized vibrations is

presented in Fig. 1. In a reference frame fixed to

a vibrating ampoule, these types of vibrations result

in the following form of the momentum equation:

_--7+ (r. P)v = -- VI, + PrV'-v + RavPr(O + y.Cfk

+ Ra{Pr_O + :_C)f(Q. t). (H

where length, time and velocity are scaled by

Ro, Ro/), and lc,Ro. Here Ro is the ampoule radius

and _ is the thermal diffusivity. The nondimen-

sional concentration and temperature, are given by

O. and C, respectively. The function f(D,, t) is the

acceleration of the vibrating ampoule and

f2 = coRo/_, is a dimensionless frequency. The con-

tinuity and heat-mass transfer equations complete

the problem formulation. The Prandtl, Schmidt,

thermal and solutal Rayleigh and vibra:ional

Rayleigh numbers and the buoyancy ratio are. re-

spectively, given by

v v flA TqR 3
Pr=- Sc=-- RaT =

K D' vK

fl_ c_ d¢o _'flATR3
:_ = _ Ra_- = (2

/3a T' vie

Here/3 and /3_ are the thermal and solutal expan

sion coefficients and AT, c_, 9, d, co, k, v, D are th,

characteristic longitudinal temperature differenc{

reference concentration in the melt, gravitation_

acceleration, vibrational displacement amplitud

and frequency, direction of gravity, kinematic vi,,

cosity and solute diffusivity, respectively. The d:

mensionless number Ra_ is the vibratiom

Rayleigh number and Ra_' = _Ra-_. Eq. (2) is solve

together with the equations governing heat an

species transfer and the condition that the veloci

is divergence free.

2.3. Rotational vibration

The equations of motion for angular vibratio:

take on a more complicated form (see Fig. '
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/ Container cross section

\'". 2g //' O(t) sinQ , t

\.\

Xl

Fig. 2. Diagram of the rotational (angular) vibration. Tke con-

tainer is rotated at an angle 0(t) about a center of rota:ion at

x* = 0. The vector q* connects the center of rotation to _ke mass

center of the container.

A container of length L is subjected to an angular

displacement O(t) in the .\"1-x3"*plane. Here the coor-
dinates x* are referred to a fixed laboratory frame

of reference. The position vector to the mass center

of the cylinder is parallel to the side of the cylinder

and is given by q* =Ro[-sin0i* +cosOi'_]

where Ro is the distance from the origin 0* zo the

mass center of the cylinder and 0(t) = a sin .c'2ot. In

a frame of reference moving with the container, the

equations of motion have the form

= div v - pk(sin 0il + cos 0i3)
i_)t

+ pfzDr - +

+ cos .C2oti ], (3)

where D,Dr denotes the material derivative, t"is the

velocity of the fluid relative to the moving reference

fl'ame, p is the density of the fluid. _ is the rate of

rotation tensor for the moving frame with respect
to the fixed frame of reference, _ is its time deriva-

tive and T is the Newtonian stress tensor for the

fluid. As in the previous example, the fluid is taken

to have a constant viscosity and the Boussinesq

approximation is assumed to hold. The dimension-

less equations governing the transport of mo-

mentum, mass and heat in the cylinder are obtained

after using L. L2,h, "._</L, and AT= Tu--Tc to

scale, respectively, length, time. velocity and tem-

perature. The governing dimensionless parameters

are the dimensionless frequency Q = f2oL'-/'t<, the

dimensionless container radius, 3=Ro/L, the

PrandtL Pr, and the Rayleigh. Ra, vibrational

Rayleigh Ran, and Ekman, E. numbers. The latter

are Nven by

v flA TgL _
Pr =-, Ra =

K KI'

flA T f2o L'* v
Rao = E = _ (4)

m' ' f2oL-"

where fi, v, 9 and K are the coefficient of thermal

expansion, kinematic viscosity, gravitational accel-

eration and thermal diffusivity, respectively. This

system of equations differ from the usual equations
in the absence of rotation in which additional terms

are present; the Coriolis term which is proportional

to ePr/E, and the centrifugal term which is propor-

tional to aa0RaaPr and varies linearly with position

in the ampoule. The importance of the latter term

depends on the dimensions of the amplitude of the

angular vibration, _, and the ratio 0. The rocking

motion of the angular vibration under considera-

tion means that centrifugal terms give rise to a peri-

odic forcing that fluctuates about the mean value at

twice the period of the angular vibration.

Since the above system of equations has not been

well studied, a conservative approach was adopted

for the study of angular vibrations and we confine

our investigation to a parametric study of flow

regimes and transitions for thermo-vibrational situ-

ations in the absence of solidification.

2.4. Solution method

The equations are solved in primitive variabl_

form (velocity-pressure, temperature, concentra

tion, etc.) using a finite element method packag_

FEMINA/3D [14]. The continuity equation an(

momentum equations are considered simulta

neously at each time step. This eliminates man'

problems related to boundary conditions and pk

ces only slight limitations on the time step size-fc

transient problems (due to the physical nature (

the problem). The regularization for the incompre:

sibility condition makes the solution procedm

more efficient, and allows the same order finil

element approximation for both the velocity an
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pressure [15]. This approach makes it possible to

solve large time-dependent problems (up to 300 000

unknowns) on a SGI 02 workstation with reason-

able computation times.

We implemented the above 3D models of
convective buovancv-driven melt flow in differen-

tially heated cylindrical containers using the

FEMINA/3D code. This code was carefully tested

on benchmarked experimental and numerical data

for a variety of 2D/3D viscous and thermo-convec-

tire flow problems [15,16].
For rotational vibrations the Ekman number

can be of the order 10-'_-10 -5 for frequencies on

the order of 1 Hz. This results in large coefficients,

Pr/E, for the Coriolis terms in the governing

equations and causes difficulties in the numerical

solution. To resolve this we implemented a high-

accuracy solution method using preconditioning

by high-order incomplete decomposition. This al-

lowed us to obtain high-precision solutions with

accuracy up to 10- 9. Preconditioning also reduced

the computation times by one to two orders of

magnitude and the memory size by a factor of S for

3D flows compared to currently available commer-

cial codes (e.g. CFD2000). A typical solution time

for a transient problem is about 2 h on a SGI 02

workstation.

3. Results and discussion

We verified the validity of the Boussinesq model

for semiconductor and oxide melts under micro-

gravity conditions. This topic has been discussed

recently by Perera and Sekerka [17], Pukhnachev

[18] and Gershuni and Lyubimov [11]. If the non-

dimensional criteria, proposed by Pukhnachev.

Pu = gL3v -_c-t is less than 1, then the Boussinesq

model for thermal convection may not be valid•

Our estimates show that the Boussinesq model is

quite adequate for the differentially heated closed

ampoule and the range of parameters and material

properties under investigation. The values of Pu are
of the order 10"_-10 5 for semiconductor and oxide

melts for g/go = 10 -5-10-'_, clearly well above 1.

A parametric study of translational and rota-

tional vibrations under typical microgravity and

terrestrial conditions for typical semiconductm

melts was performed. A snapshot of a typical floxx

pattern for translational vibration is presented in

Fig. 3. Even in the total absence of gravity the

%5 _;=__--))

V x Vy Vz P T

Fig. 3. Typical instantaneous 3D melt flo_v patterns for a lateral

"r IIv II

translational vibration at zero

Ra = 0. Rat = 7.25 x t0 t, Pr = 0.01, _ = 100 Hz. The velocity components are V_, V r, V:, P is the pressure, T is the temperature, ,,

is the instantaneous temperature disturbance and ] V I is the velocity magnitude. The grayscale range corresponds to maximum yah

(whitet of the velocity, temperature and pressure variables _o their minimum values (black}. Vibrations are applied along the horizon

(x-direction I.
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v., v:, vz T AT I[vii

Fig. -'. Typical instantaneous 3D melt flow patterns for angular vibration at zero-g, Ra = 0, Raa = 4.6 x l0 s. Pr = 0.01, w = 100 Hz.

The xe!._I_5 components are I/_, V_., It... T is the temperature, AT is the instantaneous temperature disturbance and IV] is the velocit_

magni:'_:d.e. The grayscale range corresponds to maximum values of the velocity, temperature variables (white) to their minimum values

iblack!

v_ v_ v c Iv] _T

Fig. 5. Instantaneous 3D flow patterns for circularly polarized vibration, Ra = 7.25 x 103, Ra_7.4 x i0 °, Pr = 15, o2 = 10 Hz. "1

velo,:::;, components are V,, V,, V:, T is the temperature, AT is the instantaneous temperature disturbance. C is the concentration

II _ :he velocity magnitude. The grayscale range corresponds to maximum values (whitel of the velocity, temperature

cor, c_n::':_._non variables to their minimum _alues tblack).
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vibrations have resulted in detectable flows. For the

cases examined, the temperature distribution re-

mains almost unperturbed (due to the low Pr and

weak flow strength).

The angle between the direction of vibration and

the ampoule has been studied for translational vi-

brations in the presence of an axial temperature

gradient. At high frequencies and when the angle is
zero. no influence of the vibration on the flow was

observed, even when vibrational the Rayleigh num-

ber is very high. The maximum observed effect

corresponds to an angle of 90 °. Here transport is

significantly enhanced.

Typical flow patterns for rotational vibrations

flow regimes are presented in Fig. 4. Maximal

values of flow velocity are observed at the end of

the ampoule that is farthest from the rotation ori-

gin.
The influence of vibrations on heat and mass

transfer becomes significant for oxide melts due to

their tow thermal diffusivity (Pr --- 10). These flow

patterns are shown in Fig. 5 for the case of circular

polarized vibration. Initially (at time t = 0), the

species concentration was c = 1 at the lower quar-
ter of the cylinder and c = 0 elsewhere. The evolu-

tion of the species concentration (process of mixing)

is shown in Fig. 6 together with minimum and

maximum values of velocity (for the whole domain)

components. Complete mixing occurs in about

10 s. The heat transfer {local Nusselt number at the

top and the bottom) is also enhanced bv about an

order of magnitude. If the frequency of vibration is

high. of the order of 100 HzIfor fixed Ra_.), then the

changes in heat and mass transfer due to vibrations

become less significant. This corresponds to earlier

experimen'_al observations [7.8].
Our results show that both translational, circular

polarized and angular vibration can cause average

melt flow for a range of parameters typical of prac-

tical semiconductor growth. For a given vibration

amplitude and frequency, circular polarized and

rotational (angular) vibrations result in more inten-
sive melt flows than translational ones.

The influence of forced vibration on .q-jitter-in-

duced flows using SAMS microacceleration data

from the USY, IL-2 mission (Fig. 7a) was also in-

vestigated..X, lotivated by the predictions of the

averaged equation theory presented in Ref. [-11],
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Fig, 6. Temporal evolution of (a) species concentration C. mir

imum and maximum values of C, (b) velocity extrema V_, and ((

V- for circularly polarized vibration applied to an oxide me

Ra=7.25x103.Ra_ =7.4x10 _,Pr= [5,(o= iOHz.

translational vibration was applied parallel to tl_

ampoule axis (and thus. the temperature gradien

in an attempt to damp unwanted irregular tim,

dependent flow caused by g-jitter. While the flo

variation with time becomes more regular, we d!

not succeed in completely suppressing the 0-jitt

flow (see Fig. 7b).

We found that the use of the same amplitu

vibration in the direction orthogonal to the al

poule axis is more effective. This induces intensi
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Fig. 7. Minimum and maximum values of the V., velocity com-

ponent versus time corresponding to a melt flow resp_,nse to

g-jitter (at, g-jitter and longitudinal vibration. Ra? = 7.25 × 10 "_.

and [b) q-fitter and lateral vibration, Ra_ = 7.40 x l0 "t

thermal vibration flows and flow disturbances

due to g-jitter become practically insignificant

(Fig. 7c).

4. Conclusions

The influence of translational, circularly polari-

zed and rotational (angular) vibration in analysis in

a model Bridgman melt growth configuration was

investigated. The nature of the flows produced by

the types of vibration under consideration necessi-

tated the use of the full 3D equations governing the

transport of heat. mass and momentum. The gov-

erning equations were solved numerically. Flow

patterns for translational, circular polarized and

rotational (angular) vibrations and g-jitter micro-

accelerations were analyzed. For translational

vibration, thermovibrational flow is strongly de-

pendent on the angle between the vibration direc-

tion and the temperature gradient. Circular

polarized and rotational vibrations result in more
intensive melt flows than translational ones. The

simultaneous action of g-jitter and translational

vibrations is currently being studied from the view-

point of using applied vibration as a means of flow
control.
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Abstract

A numerical solution for thermal convection flow s in a

semiconductor melt with strong static magnetic field is

presented. Rectangular cavity with different aspect ra-

tios and gravity direction aligned and misaligned with

the magnetic field vector are considered. Three numeri-

cal methods are compared. Although. the generated flows

have extremely low velocity, the numerical solution of the

governing equations involved is very complicated due to

the thin boundary layers. It is shown that the finite ele-

ment approach with regularization can provide numerical

solutions in a wide range of Ha numbers (up to 10= t. The

results compare favorably with the asymptotic theeretical
solutions.

1 Introduction

Application of magnetic fields is a promising approach for

the reduction of convection during directional solidifica-

tion of electrically conductive melts. Current technology

allows the experiments with very strong static tieids (up

to 80 KGauss) for which nearly convection free segrega-

tion is expected in melts exposed to stabilizing tempera-

ture gradients (vertical Bridgman melts with bottom seed-

ing) [1].

However. the reported experimental studies have

yielded controversial results [21.[31. Therefore. the com-

putational methods are. a fundamental tool that may en-

hance our understanding of the phenomena occurring dur-

ing the solidification of semiconductor melts. Moreover.

the effects like the bending of the isomagnetic lines, dif-

ferent aspect ratios and misalignments between the grax-

ity and magnetic field vectors which are difficult to model

analytically, be studied through numerical simulations.

The reported numerical models and results are not able

to explain the published experimental data [4],[5]. The

computational task is complicated because of the thin

boundary layers [6], although velocity of the generated

flo_s is extremely low.

Here. for comparison, three different numerical ap-

proaches we have been used :

( 1) The spectral method implemented in [7],

(2] The finite element method with regularization for

boundary layers [8],

(3] The multiquadric method, a novel method with global

radial basis functions [9].

The results obtained by these three methods are pre-
sented for a wide range of Hartmann numbers correspond-

ing to magnetic fields B from 0.05 to 5.0 Tesla (0.5 to

50.0 KGauss}. Comparison and discussion of accuracy,

efficiency, reliability and agreement with the asymptotic

solution are presented.

2 Governing equations

The txxo dimensional steady state thermal convection of

an incompressible viscous fluid (melt) in a rectangular

cavity having width D and hight H was considered. More

general geometries are discussed in [ 17], [ 18], [ 19].

The governing momentum, continuity and energy equa-

tions +using the Boussinesq approximation) are respec-
tixelx :



IVVtV- PrV=V- Vp = R.Pr.e).e..- F (l_

V. V = 0 (2]

(VV)® = V:e). t3)

where length, time and velocity are scaled by L. L'-/_ and

g/L respectively. Here L is equal to the the smaller of
the u,,.o characteristic dimensions in', oix ed ID and HL and

1<= 7 is the thermal diffusivitv of the melt. F is a body
force due to magnetic field (Lorcnz forceL The Lorenz

force is gixen by

F = PrHa:[(V x cB) x c_] = (PrH,e'-i'I, 0) (4)

\_,here _,'1 is the horizontal component of the \elocitv. The

electrical potential ,,','as neglected, because, when a ver-

tical magnetic field is applied, the electrical potential is
uniform iV0=0) [I]. The electrical potential can not

be negtected if the symmetry is broken, e.g. if the mag-

netic field direction anti the gravity xector are slightly rots-

aligned. Hoxvever. to simplify the stud,,, we neglect this

effect. According to [I 1- Joule heating due to electromag-

netic field can be neglected as ',,,ell. The nondimensional

temperature O is .,,caled b_ O= ( T - T,,,,,1) /.XT. AT = GL.

G is a _crtic:d temperature ,.zradient _! The Prandd.

R<?AiS, h and Ha,Tmam_ numbers are. respectively, given
b_

v _ATvL" _,p
Pr = -. R_ = ' • . Ha = LBo

\'lC.

Here _.;e.x'.p._J arc thermal expan.,,ion coefficient, grav-
itational acceleration, kinematic viscosit',, density, and

electrical conducuxity" ,'90 is tile magnetic field intensity'.

c_. es are the unit xectors in the direclion of gravitational

acceleration and magnetic lield.

The boundar', conditions for eq. 1}-(3) are: (i) the

non-slip condition for the velocit\. V = 0. on the walls.

and _ii) specified temperature distribution. @ = v on side
v, atls. and (a)g = _¢)(_(_ _ L) 2 at the bottom. To exclude

the undcflned constant, the pres.,ure was set to zero at an

arbitrar\ location, p(.vn,y0) = 0.

3 Problem parameters

Tile problem aas sohed using the properties of Germa-

nium i Ge _ineh exposed to magnetic fields having inten-
>il\ B,_ in a range from (i to 5 Tesla _and in fe'.,, cases up to

50 TeslaL "l3le directicm of magnetic field ',ector is axial.

eg = (0.1). The corresponding Harmlann nurnber ,,,aries
from Ha = 0 to 2170 (and in few cases to H,z = 2.17.10 "_1.

The flow domain is rectangular cavity having hight H
and width L. Two cases were considered !al L = I cm.

H = 2cm. and (b) L = 2cm, H = 1cm.

The temperature gradient on a side wall is G =

70K/cm. The average lateral temperature gradient at

the bottom boundary was 0.5K/cm. The corresponding

Rayt.eigh number is Ra = 1.24.105. Earth gravity g was

considered to be (i) aligned to the magnetic field direction.

g = g0(0, - 1) and (it) misaligned by 0.5 degrees.

4 Numerical methods

Three numerical methods were used to sohe the system of

eq. (1) - (3) for the boundary conditions and parameters

given above.

4.1 Spectral element method

To use the spectral element (SE) code NEKTON {7]. the

domain was divided into quadrilateral elements, refined

near the walls (Fig. laY. 8 x 8 Cbebyshev polynomials

were used inside each of elements for field variables ap-

proximation. In our tests total number of elements was
362. The total number of unknowns was 5 • l0 "a.

4.2 Finite element method with regulariza-

tion for the Navier-Stokes equations

The finite element method with regularization for the

Navier-Stokes equations (FEMR$ ,.,,'as proposed in [8] for

high Re number flows. It was shown tha_ such a regular-

ization works well in case of flows with thin boundary' lay-

ers. even with fe\v mesh nodes placed inside the boundary

layer. For the present problem, the continuity, equation (2)
is modified as follows

V, V = zV. (Vp- F - RaPt. ®, e_) (5)

where "t is a small regularization parameter. For ": --+ 0 eq.

(5) approaches the original equation t2). The boundary

condition for the pressure on the ,,,,,all is

(Vp - F - RaPr. ®. e_,) - n = O. (6)

where n is a unit wall normal vector. Eqs. (5"1 and (6,)

present the main feature of this method, and ensure the
balance of the component of the force normal to the region

boundary. This approach allows the use of the same order

finite element approximation for the ,.elocity and pressure



withall unknownslocated;it the same nodal poims, The

justification of this regularization is given m If0]. Similar
terms haxe been obtained as a result of the consistent treat-

ment o(time-adx ancement for the divergence-equation by
L6hner tsee [I IlL L6hner has also shown that similar

ten'as appear in the discrete equations as a result of differ-

ent order finite element approxinlations used for interpo-

lation of velocity and pressure.

The numerical solution is insensitive to the value of _:.

In out calculations we have chosen the value of z within

the range I0 -s to ll) -'_ and obtained nearly identical so-

lutions. For a smaller value of 'r the discrete equations

become nearl\ incompatible, and numerical solution ex-

hibits strong spatial oscillations.

Simple linear tinite elements were used for numerical

approximation of velocity, pressure and temperature. Tri-

angular meshes v,ith 40 x 100 and 80 x 100 nodes were

refined near the walls (Fig. lb/. Since on both meshes

yielded nearl\ identical results, we used the 40 x 100
rnesh in most runs. Total number of nodes and unknowns

',',as respectively 4. l03 and 16. 103. Tl'm FEMINA/3D

CFD code IFinite Element Method IN Applications) [12]

was modified to implement the proposed regularization

method. Discrete finite element equations corresponding

to the eqs. t l/. _5). _3'_were soh'edtogether simuhane-

ousl', bx the CNSPACK solver [12] using the CGS-type

iteratp, e technique and high order preconditioning by in-

complete decomposition.

4.3 ._luitiquadric radial basis function

method

The Muhiquadric Radial Basis Function I,MQ_ Method

is a noxel mcshless collocation method with global ba-

st> fcmctioi>,. The concept of solving partial differential

equatie, ns _ PDEI using radial basis functions iRBFsl ,.,,'as

intrcMuced bx Kansa in 1990 [9]. He implemented this

appreach for the _,olution of hyperbolic, parabolic, and

elliptic PDEs using /tie MQ RBFs proposed b', Hardy

[ 13].{ 14} for interpolation of scattered data.

.a,n RBF is a function that depends only upon the dis-

lance bel,a een a poini (x.y) and a reference node (xi,yj).

Among ,qudied RBFs. onl,, the MQ RBFs have been

pro\ca to haxc an exponential conxergence for the func-

ti_m interpolation [161. A MQ RBF is given by' gj(.v.y) =

V' *-x i: - {y- v,): -,-c 7 . v, herec s is called the shape

pc_r_zmere'r. The numerical experiments for parabolic and
elliptic PDEs by Kansa {9] >how high accuracy and effi-

cient; of the MQ scheme. A brief review on MQ RBF for

lhe ,;olution of PDE can be found in [15] and on the RBF-

PDE Web _,ite I22]. This approact_ results in modest size

systems of nonlinear algebraic equations which can be ef-

ficiently solved bv using widely available library routines
and linear solvers for dense matrices.

For a given set of N nodes the solution for unkno_ n V.

p orO is approximated as a sum of MQ/'unctions with the
coefficients as unknown. These coefficients are found by

collocating governing equations at the internal nodes and

boundary conditions at the boundary nodes. The nonlin-

ear algebraic system is soh'ed by Newton method.

.25. x 25 uniformly distributed nodes and constant shape

parameters cj = co = coast were used for all functions.
Total number of unknowns was 2500.

5 Results and discussion

5.1 Convection in rectangular cavity with

H/D=2

The nondimensional parameters Pr = 0.006, Ra = 1.25 •
10-_were used in all calculations.

Flow without magnetic field: B=0, Ha=0

The flow domain has D = I, H = 2 and the length scale

was L = D. The temperature distribution at the bottom
boundary is given by' OB = -3.575.10-3(I -4x:). The

results for the case ot = 0 are shown in Fig. 2 (o_ is the

angle between the gravity vector and the vertical axisl.
The solution obtained by all three methods are nearl_

identical. The flow is driven by radial temperature gra-

dient caused by parabolic temperature profile imposed on

the bottom boundary. The flow pattern consists of two

counter-rotating symmetric cells, located at the lower cor-

ners. Note that the stabilized axial temperature gradient is

suppressing the flow.

If the direction of gravity xector is misaligned with the

ampoule axis by 0.5deg., the flow pattern becomes quite

different. The component of gravity normal to the temper-

ature gradient becomes a driving force for the convection,

A single roll is formed, while the magnitude of melt ve-

locity is higher by a factor of two to three.

Flows under magnetic fields

5.1.1 B = 0.05 Tesla, Ha=21.7.

The MQ method did not yield a solution, because the

Newton method did not converge (since the Jacobian be-
comes ill-conditioned).

The solution bv the SEM and FEMR methods stao_ no-

table differences. The SE solution for the velocity field

exhibits numerical oscillations between the mesh nodes.



TheflowpatternfromFEMRistilesameasin theabsence
of amagneticfield4Fig.3). Theverticalvelocityprofile
atv= 0.25showsaboundarylayer.Tiletlo,aveh',cilvis
decreasedbyaboutafactoroftwo.

5.1.2 B = 0.5 Tesla. Ha=217.

The boundary layer becomes very thin. and tile flow ve-

locity is about two order of magnitude lower compared

to B -.- 0 (not shown). The velocity proliles from the SE

computation exhibit spatial oscillation with velocity sign

change between mesh nodes. The FEMR can provide the

results still without difficuhv, the velocity profiles remain
smooth.

5.1.3 B = 5.0 Tesla, Ha=2170.

The results from the SE computation showed strong nu-
merical instability. The FEMR solution indicates that the

flow pattern is about the same. while the velocity is lower

about two order of magnitude compared to B = 0.5 Tesla.

The boundary lavers are extremely thin (0.01ca:,. and

therefore almost invisible on a plot {Fig.4).

In case of a misalignment of gravitational acceleration

with ampoule axis. the flow pattern changes to one _ig cell

tbr this and all other values of magnetic field considered.

5.1.4 B = 50 Tesla, Ha=21700.

This case was done .just to test the abilit\ of proposed
FEMR method, the solution still remains smooti_ with

even three times more thin boundary' layer compared Io
B = 5.0 Tesla. Stream lines for this case are shcv.n in

Fig. 5. and the velocity amplitude is presented by' tee most

right point on a plot in Fig.6.

Stretching of the stream lines caused by the m._gnetic

field is shov, n in Fig. 5. This stretching pre:-ented

schematicall\ in '_1]. [5] but. to our knox. ledge, compu-
tational results v. ere not shown.

Discussion

Figure e, sho_x s the maximum radial velocity calculated.

using the FE*IR method, for different values of :he im-

posed magnetic field B. The maximum of horizontal (ra-

dial) ve]ocitv xersus B is presented by few curves, marked
as "'Vr!h)'" for FEMR on 40x100 mesh uniform in the

vertica] direction, by' "'Vr(f)'" for 40x 100 mesh re£ned at

the walls and b} "'Vr(d)'" for 80x100 mesh reline5, at the

walls. Results for misaligned case are presented by the

curve with squares, labeled as "'Vr(a = 0.5)". One .:an ob-

serve the predicted asymptotic dependence _.,,,,_, - Ha-:

[I] for all the cases, starting at about B = 0.05 Tesla

(Ha ,._ 20).

The main computational difficulty of this problem is

due to the viscous flow with thin boundary layer. De-

spite the fact that actual flow velocities are very low and

the Reynolds number obtained using the computed ve-

locities, is Re ,.-, 10 -I to 10 -_' , a big value of the Hart-

mann number results in a relatively small coefficient at the

highest derivative of the velocity in the momentum equa-

tion., Solution of such a problem exhibits thin boundary

layer with the thickness 8 ,,-, Ha -I, and the the "equiv-

alent" Reynolds number Re_,¢,. ,_ Ha:, for B=0.5 Tesla

Re_q,. = 4.7- 104 and B=50.0 Tesla Re_,#. = 4.7- I08.

5.2 Thermal convection in rectangular cav-

ity with aspect ratio H/D=0.5

The nondimensional temperature distribution at the bot-
tom boundary' is given by ®B = --7.150-10-3(I --x z)

The axial temperature gradient applied on the vertical wall
is also G = 70 K./cm.

Flow without magnetic field: B=0. Ha=0

The solution obtained by' all three methods are close to
each other. The flow pattern consists of two counter-

rotating symmetric cells, that occupy' most of the volume.

Fig. 7.

In the case of the gravity misalignment with the am-

poule axis direction by 0.5 deg.. the axial temperature gra-

dient becomes a main driving force for the thermal con-

vection. This results in the change of flow pattern that

becomes consisting of one big convective cell.

Flow under magnetic fields

The results are shown in Fig. 8. Again when Ha number

is high. all the methods except FEMR, exhibit the same

difficulties as in a case of aspect ratio H/D = 2. A sum-

mary of the results is shown in Fig. 9. The suppression of
the flow is essentially same efficient as before with sim-

ilar asymptotic dependences V,,,a_ "_ Ha-'. The velocity

profile in the boundary' layer obtained by FEMR is shown

in Fig. 10. One of the advantages of FEMR is that its so-

lution remains smooth even at the big change of the slope.
One can see that the thickness of the vertical boundarx

layer is in agreement with asymptotic solution. 8 _ Ha-f.

The tangent velocity derivative at the boundary decreases

with Ha number as _ -..-,_ ,--,Ha -_

Comparing between Fig. 6 and 9 it is found that mis-

alignment's impact on the reducing of the convection is

more important for the aspect ratio H/D = 1.



Conclusions [21

We compared three different numerical methods for the
solution of thermal convection flows in a semiconduc-

tor melt with strong static magnetic field applied. These [3]

are spectral element method, finite element method with

regularization /'or the Navier-Stokes equations and mu)- [41
tiquadric method, a method v, ith global basis functions.

Although the generated flows are extremely low. the com-

putational task is very complicated because of the thin [5] •
boundary layer at high Hartmann numbers, Ha >> 1. We

considered melt region geometry with different aspect ra-

tios. and gravity direction aligned and misaligned with the

magnetic field vector. The comparison shows that the fi-

nite element approach with regularization can obtain sta- [6]

ble and reliable solutions in a wide range of Ha number,

up to 10;. These results compare favorably with asymp-
totic solutions.

The main difficult)' of this problem is that a flow has

a very thin boundary layer. Despite the tact that ac- [7]
tual Reynolds number is very low. Re ,,, 10 -1 to 10 -6

• a high value of the Hartmann number results in a rel- [81
am'el) small coefficient at the velociw Laplacian in the

momentum equation. Solution of such problem exhibit

thin boundary layers with related, like tor high Reynolds
number flows, difficulties. That is one of the reasons for

the discrepancy' in the results that numerical studies re-

ported. Both the spectral method and the multiquadric [9]
method \vith global basis functions needs improvement to

deal xxith thin boundary lavers. Multilevel approximation
by Fasshauer [201.[211 can be one of the wax, s.

Numerical solution of these problems by available

commercial CFD codes may be not efficient or not possi-

ble. Adaptive algorithms can be a promising solution. De-
,.elopment of more accurate and efficient solution meth- [10]

ods for this problem is nccessar\.
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Introduction

The character of natural buoyant convection in rigidly c'ontained inhomogeneous fluids can be

drastically altered by vibration of the container. For certain experiments and operating

conditions, vibrations are expected to have a significant influence on heat and mass transfer

onboard the International Space Station i ISS). Furthermore. it appears that g-jitter vibrations will

exist on ISS over a wide range of frequencies [1]. In general, vibrational flows are very complex

and are governed by many parameters. This complexity makes it almost impossible to correctly

predict vibrational effects empirically. Thus, a careful theoretical approach combined with

numerical modeling is essential. Available flight experiment data clearly show that. once

initiated by' "g-jitter", the effects of convective flows can persist for long times even when the g-

jitter disturbance (,and consequent flow_ were short-lived [2-7].

In many terrestrial crystal growth situations, convective transport of heat and constituent

components is dominated by buoyancy driven convection. Control of convective transport

continues to be an important aspect of crystal growth research. Several groups are actively

pursuing control of convection using static and rotating magnetic fields. Magnetic fields cannot

be used for flow control in melts and solutions that are poor conductors. Flow suppression

through vibration or vibro-convective mixing may offer an attractive ahernative in such cases.

Recent work has shown that the character of natural buoyant convection in non-uniformly heated.

rigidly contained inhomogeneous fluids can be drastically altered by vibration of the container. A

review and relevant theoretical and experinaental research can be found in publications [1-13].

Thus. vibrational induced flow can potentially' be used to influence and even control transport in

some crystal growth situations. A practical quantitative understanding of vibrational convection

as a control parameter in crystal growth situations is currently not available. The objective of the

work is to assess the feasibilit\ of the use of vibration to suppress, or control, convection in order

to achieve transport control during crystal growth.

Buovanc\' driven vibro-convective motion occurs when oscillatory displacement of a container
wall induces the acceleration of a container wall relative to the inner fluid. The vibration may be

viewed as a time-dependent modulation of steady gravity. In a closed container the fluid will

move as a rigid body with a container. If. boy<ever, the fluid density is nonuniform, fluid motion

may ensue. The magnitude of this motion, of course, depends on the orientation of the vibrational

direction with respect to the local density gradients. Note that, similar to Rayleigh-Benard

configurations, there may be a "'critical" threshold for the coupled vibrational frequency and

anaplitude, to cause convection. Interestingly, it should be noted that in case of a constant density

fluid subject to spatially nonuniform vibration, fluid motion can also occur (for example, angular

vibration [ 11 ]).

To properly investigate influence of translational, circularly' polarized and rotational langular)

vibration necessitates the use of the full 3D equations governing the transport of heat. mass and

momentum. Selected example,_, of our on,,oin,,== work on this topic are outlined below.



We considerapurely thermo-vibrationalconvection in adifferentially heatedcylindrical cavity
with no considerationof solidification. The fluid is takento be Newtonianandthe Boussinesq
approximation is assumedto hold. Thecalculationswere performedfor identification and
characterizationof thermovibrationalflow andarepart of anongoingproject involving flow
visualizationmodel experimentsbeingconductedby Feigelson[ 10].

Mathematical model for translational and polarized vibration

Translational vibration corresponds to a linear displacement such as, for example, u= d cosoot.

where d is a real vector giving the displacement magnitude and (9 is the frequency. In this case

the ampoule is displaced back and forth upon the same line. Polarized vibrations are

characterized bv a displacement u = Re{de _'} where d = cl, - id, (see Fig. l(a.b)). Here the

instantaneous vibration direction rotates in the polarization plane defined by the real vectors

d_ and d.. A sketch showing both translational and circular polarized vibrations is presented in

Fig. 1. In a reference frame fixed to a vibrating ampoule, the momentum equation is

0v
--+(v.V)v=-Vp+P,'V:v+RarPr(O+o_C)k+Ra'_P,'(O+otC)f(n,t ), (1)
at

where length, time and velocity are scaled by Ro, Ro2/_and _Ro. Here Ro is the ampoule radius

and _: is the thermal diffusivitv. The nondimensional concentration and temperature, are given by

O. and C. respectively. The function f (.Q.r) is the acceleration of the vibrating ampoule and

£2 =ooR_{ / _¢ is a dimensionless frequency. The continuity and heat-mass transfer equations

complete the problem formulation. The Prandtl. Schmidt. thermal and vibrational Rayleigh

numbers and the buoyancy' ratio are given by

Pr v v _ATgR 3 fi c= * d(.o_" fiATR :"=--, So=--. Rar - ,o_- .Rat = (2)
_; D vt¢ fiAT w¢

Here j3 and tic are the thermal and solutal expansion coefficients and AT. c, g, d, co. k, v, D are

the characteristic longitudinal temperature difference, reference concentration in the melt,

gravitational acceleration, vibrational displacement amplitude and frequency, direction of

gravity, kinematic viscosity and solute diffusivity, respectively. The dimensionless number Ra*r

is the vibrational Rayleigh number and Ra*s = (z Ra*7. Equation (2) is solved together with the

equations governing heat and species transfer and the continuity equation.

Rotational vibration

The equations of motion for angular vibrations take on a more complicated form (see Fig. lc). A

container of length L is subjected to an angular displacement O(t) in the x 1*-x3* plane. Here the

coordinates x + are referred to a fixed laborator'v frame of reference. The position vector to the

mass center of the cylinder is parallel to the side of the cylinder and is given by q* = Ro[-sinOi_ '_ +

cos 0i._*] where R0 is the distance from the origin 0* to the mass center of the cylinder and O(t) =

8 sint2,;r. In a frame of reference moving with the container, the equations of motion have the

form



[ ]p_ =divT - pktsinOi, +cosOi,,t +p 2_)v- _:x +_x + e-£2t_Rocos_oti _ (3)
Dt

where D/Dr denotes the material derivative, v is the velocity of the fluid relative to the moving

reference frame, p is the density of the fluid. _ is the rate of rotation tensor for the moving
2.

frame with respect to the fixed frame of reference...Q is its time derivative and T is the

Newtonian stress tensor for the fluid. The dimensionless equations governing the transport of

momentum, mass and heat in the cylinder are obta.ined after using L, L2/_, ", _L, and _IT =TH - Tc

to scale, respectively, length, time, velocity and temperature. The governing dimensionless

parameters are the dimensionless frequency .(2 = .QoL2/_C, the dimensionless container radius. O

= R(v'L. the Prandtl. Pr, and the Rayleigh. Ra. vibrational Rayleigh RaG, and Ekman. E.

numbers. The latter are given by

Pr=--v . Ra - fiATgi)

I_" R%'

v
, Ra n = _' . E= .(_2o/.,_,, (,4)

where/_, v. g and _.-are the coefficient of thermal expansion, kinematic viscosity, gravitational

acceleration and thermal diffusivitv, respectively. This system of equations differ from the usual

equations in the absence of rotation in that additional terms are present: the Coriolis term which

is proportional to 8.Pr/E, and the centrifugal term which is proportional to e.2ORal?Pr and varies

with linearly with position in the ampoule. The importance of the latter term depends on the

dimensions of the amplitude of the angular vibration, e. and the ratio O. The rocking motion of

the angular vibration under consideration means that centrifugal terms give rise to a periodic

forcing that fluctuates about the mean value at twice the period of the angular vibration.

Since the above system of equations has not been well studied, a conservative approach was

adopted for the studv of angular vibrations and we confine our investigation to a parametric study

of flow regimes and transitions for thermo-vibrational situations in the absence of solidification.

Solution method

The equations are solved in prinfitive variable form using a Finite Element Method code

FES1L\A/3D developed by the PI [14]. The continuity equation and momentum equations are

considered simultaneously at each time step. This eliminates many problems related to boundary

conditions and places only slight limitations on the time step size for transient problems. The

regularization for the incompressibility condition makes the solution procedure more efficient.

and allows the same order finite element approximation for both the velocity and pressure [15].

This approach makes it possible to solve large 3D time-dependent problems (up to 300,000

unknowns_ on a SGI 02 workstation with reasonable computation times.

We implemented the above 3D models of convective buovancv-driven melt flove in differentially

heated cylindrical containers using the FEMINA/3D code. This code was carefully tested on

benchmarked experimental and numerical data for a variety of 2D/3D viscous and thermo-

convective flow problems and flows under magnetic field [15.16,19].

For rotational vibrations the Ekman number can be of the order 10 -4 to 10 -5 for frequencies on

the order of 1Hz. This results in large coefficients. Pr/E. for the Coriolis terms in the governing



equations and causes difficulties in the numerical solution. To resolve this we implemented a

high accurac\' solution method using preconditioning by high order incomplete decomposition

(accuracy' up to I0"_). The computation times reduced by one to two orders of magnitude and the

memory size by a factor of 8 for 3D flows compared to currently available commercial codes

(e.g. CFD2000). A typical solution time for a transient problem is about two hours on a SGI O2.

Results and discussion

We verified the validity of ttle Boussinesq model for _,einiconductor and oxide melts under

microgravity conditions. This topic has been discussed recently by Perera, Sekerka [17],

Pukhnachev [18] and Gershuni, Lyubimov [1 I]. If the nondimensional criteria, proposed by

Pukhnachev. Pu = gk3v-_ ;_ is less than 1. then the Boussinesq model for thermal convection

may not be valid. Our estimates show that the Boussinesq model is quite adequate for a

differentially' heated closed ampoule and the range of parameters and material properties under

investigation. The values of Pu are of the order 104 to 105 for semiconductor and oxide melts for

g/go = 10 .5 to 10 -_. clearly well above I.

A parametric study of translational and rotational vibrations under typical microgravity and

terrestrial conditions for typical semiconductor melts was performed. A snapshot of a typical

flow pattern for translational vibration is presented in Fig. 2(a). Even in the total absence of

gravity the vibrations have resulted in detectable flows. For the cases examined, the temperature

distribution remains ahnost unperturbed {due to the low Pr and weak flow strength).

The angle between the direction of vibration and the ampoule has been studied for translational

vibrations in the presence of an axial temperature gradient. At high frequencies and when the

angle is zero. no influence of the vibration on the flow was observed, even when vibrational the

Raleigh number is very high. The maximum observed effect corresponds to an angle of 90

degrees. Here transport is significantly enhanced.

Typical flow patterns for rotational vibrations flow regimes are presented in Fig. 2(b). Maximal

velocity values are observed at the end of the ampoule that is farthest from the rotation origin.

The influence of vibrations on heat and mass transfer becomes significant for oxide melts due to

their low thermal diffusivitv IPr - 10}. These flow patterns are shown in Fig. 3(a) for the case of

circular polarized vibration. Initially {at time t = 0), the species concentration was c= 1 at the

loxver quarter of the cylinder and c = 0 elsewhere. The evolution of the species concentration

(.process of mixing) and velocity Iminimal and maximal values of V:) is shown in Fig. 3(b,c).

Complete mixing occurs in about ten seconds. The heat transfer (local Nusselt number at the top

and the bottonl) is also enhanced by about an order of magnitude. If the frequency of vibration is

high. of the order of 100Hz ifor fixed Raa), then the changes in heat and mass transfer due to

vibrations become less significant. This corresponds to earlier experimental observations [7.8].

Our results show that both translational, circular polarized and angular vibration can cause

average melt flow for a range of parameters typical of practical semiconductor growth. For a

given vibration amplitude and frequency', circular polarized and rotational (angular) vibrations

result in more intensive melt flows than translational ones.

The influence of forced vibration on g-jitter induced flows using SAMS microacceleration data

from the US.X1L-2 mission was also investigated [13]. Motivated by the predictions of the

axeraged equation theory' presented in Ref. [11], translational vibration was applied parallel to

_he ampoule axis Iand thus. the temperature gradient) in an attempt to damp unwanted ilTegular



time-dependentflow causedby g-jitter. While the flow variation with time becomes more

regular, we did not succeed in completely suppressing the g-jitter flow. We found that the use of

the same amplitude vibration in the direction orthogonal to the ampoule axis is more effective.

This induces intensive thermal vibration flows and flow disturbances due to g-jitter become

practically insignificant.

Summary

The influence of translational, circularly' polarized and rotational (angular) vibration in analysis

in a model Bridgman melt growth configuration was investigated. The nature of the flows

produced by the types of vibration under consideration necessitated the use of the full 3D

equations governing the transport of heat. mass and momentum. The governing equations were

solved numerically. Flow patterns for translational, circular polarized and rotational (angular)

vibrations and g-jitter microaccelerations were analyzed. For translational vibration,

thermovibrational flow is strongly dependent on the angle between the vibration direction and

temperature gradient. Circular polarized and rotational vibrations result in more intensive melt

flows than translational ones. The simultaneous action of vibrations and magnetic field [19] is

currently being studied.
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(angular) vibration. The container is rotated at an angle O(t) about a center of rotation at x* = 0. The vector q*

connects the center of rotation to the mass center of the container.
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Fig. 2: (a) Instantaneous 3D flow patterns for a lateral translational vibration at Og, Ra = O, Rat = 7.25-104.

Pr=0.01. o9 = 100Hz. The velocity components are V,!(,,V:, P is the pressure. T is the temperature. AT is the

temperature disturbance and IVI - velocity magnitude. The grayscale range corresponds to maximum values (white)

of the velocity, temperature and pressure variables to their minimum values (black). Vibrations are applied along the

horizontal (x-direction); (b). 3D melt flow patterns for angular vibration at zero-g, Ra=O, Ra,= 4.6 • l0 t, Pr =0.01.
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Tile Multiquadric Radial Basis Function (MQ) Method is a meshless collocation method with
global basis functions. It is known to have exponentional convergence for interpolation prob-
lems. We descretize nonlinear elliptic PDEs by the MQ method. This results in modest-size
systems of nonlinear algebraic equations which can be efficiently continued by standard contin-
uation software such as AUTO and CONTENT. Examples are given of detection of bifurcations
in 1D and 2D PDEs. These examples show high accuracy with small number of unknowns, as
compared with known results from the literature.

1. Introduction

Nonlinear multidimensional elliptic partial differen-

tiaI equations (PDEs) are the basis for many sci-

entific and engineering problems, such as viscous

fluid _tow phenomena, chemical reactions, crystal

growth processes, pattern formation in biology, etc.

In these problems it is crucial to understand the

qualitative dependence of the solution on the prob-

lem parameters.

During the past two decades the numerical con-

tinuation approach has become popular for qual-

itative study of solutions to nonlinear equations,

see e.g. [Rheinboldt, 1986; Allgower & Georg,

1990; Doedel et al., 1991; Seydel, 1998] and ref-
erences therein. Several software packages, such

as AUTO97 [Doedel et al., 1997] and CONTENT
[Kuznetsov &: Levitin, 1995-1997], are currently

available for bifurcation analysis of systems of non-

linear algebraic equations and ODEs, with only
limited bifurcation analysis for 1D elliptic PDEs.

For 2D PDEs, we mention the software package

PLTMG [Bank, 1998] that allows to solve a class of
boundary value problems on regions in the plane,

to continue the solution with respect to a pa-

rameter and even to compute limit and branching
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points. This software combines a sophisticated fi-
nite element discretization with advanced linear al-

gebra techniques. Numerical continuation for 1D

and 2D elliptic PDEs is currently an active re-

search area, see e.g. [Neubert, 1993; Shroff & Keller,

1993; Schwetlick et al., 1996; Chien et al., 1997;

Davidson, 1997; Kuznetsov et al., 1996; Chien

& Chert, 1998; Doedel & Sharifi, to appear] and

[Govaerts, 2000, Chap. 10] for reaction-diffusion

equations; and [Mamun & Tuckermann, 1995;

Poliashenko & Aidun, I995] for CFD. The typi-
cal approaches used are based on the finite ele-
ment or finite difference discretization of the PDEs.

They result in very large (thousands or tens of

thousands for 2D problems) systems of nonlinear

algebraic equations with sparse matrices. The

continuation process is typically based on the

predictor-corrector algorithms that require solving

nonlinear systems by the Newton type method at

each continuation step. For the bifurcation analysis

during the continuation process, one usually needs
to compute at least a few eigenvalues of the Jaco-

bian matrix at each continuation step. The meth-

ods currently used both for the continuation and

the corresponding eigenvalue problems are variants

of Krylov subspace methods and recursive projec-

tion (RPM). Solving the resulting linear system and

the eigenvalue problem require sophisticated algo-

rithms and considerable computer resources (CPU

time, memory, disk space, etc.).

In this paper we report results of numerical
experiments with continuation and detection of bi-

furcations for 1D and 2D elliptic PDEs discretized

by the Multiquadric Radial Basis Function (.kIQ

RBF or, simply, MQ) method. The MQ method, in-

troduced for solving PDEs in [Kansa, 1990a, 1990b],
is a meshless collocation method with global basis

functions which leads to finite-dimensional prob-

lems with full matrices. It was shown to Dve

very high accuracy with a relatively small number

of unknowns (tens or hundreds for 2D problems).

The corresponding linear systems can be efficiently

solved by direct methods. This opens a possibil-
ity for using standard continuation software, such

as AUTO and CONTENT, designed for bifurcation
analysis of modest-size problems. We also note that

the MQ method does not require predetermined lo-

cation of the nodes as the spectral method does.

In Sec. 2 we summarize previous results on

solving PDEs by the MQ method. In Sec. 3 we

formulate an adaptation of the MQ method suit-

able for the discretization of parametrized elliptic

PDEs. In Sec. 4 we present results of our numerical

experiments with a 1D eigenvalue problem and in

Sec. 5 we present results of our numerical experi-
ments with continuation of solutions and detection

of bifurcations for 1D and 2D elliptic PDEs. In
Sec. 6 we discuss our results.

2. Review of the MQ Method

for Elliptic PDEs

Thb honcept of solving PDEs using radial basis

functions (RBFs) was introduced by Karma in 1990

[1990a, 1990b]. He implemented this approach for

the solution of hyperbolic, parabolic, and ellip-

tic PDEs using the MQ RBFs proposed by Hardy

[1971, 1990] for interpolation of scattered data.
There exists an infinite class of RBFs. An

RBF is a function fj(x) E R, x E R (say, in

1D case) that depends only upon the distance be-

tween x and a reference node xj. A MQ RBF is

gj(cj, x) = ((x-zj) 2 +c_) 1/2, where cj is called the
shape parameter. In a comprehensive study, Franke

[1982] compared (global) RBFs against many pop-

ular compactly supported schemes for 2D interpo-

lation, and he found that the global RBF schemes

were superior on six criteria. Among the studied

RBFs still only the MQ RBFs are proven to have
an exponential convergence for the function inter-

polation [Madych & Nelson, 1990; Wu & Shaback.
1993]. Madych [1992] showed theoretically that

the MQ interpolation scheme converges faster as

the constant MQ shape parameter becomes pro_es-

sively larger.

The numerical experiments for parabolic and

elliptic PDEs by Karma [1990a, 1990b] and

Golberg and Chen [1996] show high accuracy and
efficiency of the MQ scheme. For example, for

a 1D convection-diffusion problem, Karma [1990b]
showed that the MQ solution with 20 nodes had the

maximum norm error within 10-4, while a second-
order finite difference scheme with K = 200 nodes

and an optimal combination of the central and up-

wind differences for the problem resulted in a much

larger error of 3.10 -2 .

In the numerical experiments with a nonlin-

ear time-dependent problem modeling the 1D yon

Neumann blast wave Kansa [1990b] compared the

exact solution and its derivatives with the MQ so-

lution (35 nodes) and with a second-order finite dif-
ference one. The error in the maximum norm for

pressure, density, energy and their gradients was

10-6 or less for the MQ method, and in the range
from 10 -4 to 10 -2 for the finite difference method

with 5000 nodes.



Golberg and Chen [1997]showed that the solu-

tionofthe 3D Poissonequation inan ellipsoidcould

be obtained with only 60 randomly distributed

nodes to the same degree of accuracy as a FEN[

solution with 71 000 linear elements.

Sharan et al. [1997] showed that the MQ

method yields accurate solutions for 2D Poisson and

biharmonic equation, and that the MQ approach

is simple to implement on domains with irregular

boundaries. Cook et al. [1993] noted many benefits

of using MQ RBFs to solve an initial value problem

for a 3D nonlinear equation for the collision of two

black holes. The resulting discrete system had 2000

unknowns and was solved directly.

Buhmann [1995] showed that RBFs and, in

particular, MQ RBFs are useful for construct-

ing prewavelets and wavelets. Wavelets are most

frequently used in time-series analysis, but there

are results for using wavelets to solve PDEs

[Fasshauer & Jerome, 1999; Narcowich et al.,

1999]. As Buhmann points out, one can gener-

ate true wavelets by an orthonormalization process.

The wavelets are an elegant way to achieve the

same results as multigrid schemes. The MQ RBFs
are attractive for prewavelet construction due to

exceptional rates of convergence and their infinite
differentiabiiity.

The paper by Franke and Schaback [1998] pro-

vides the first theoretical analysis for solving PDEs

by collocation using the RBF methods.

Kansa and Hon [1998] studied several methods
for solving linear systems that arise from the MQ

collocation problems. They studied the 2D Pois-

son equation, and showed that ill-conditioning of

the system could be circumvented by using block-

partitioning methods.

Kansa [1990b] introduced the concept of vari-

able shape parameters cj in the MQ scheme that ap-

peared to work well in some eases. In [Kansa &: Hon,

1998]. a recipe for selecting Q based upon the local
radius of curvature of the solution surface was found

to give better results than a constant cj MQ scheme.

Kansa and Hon [1998] tested the MQ method for

the 2D Poisson equation with a set of exact solu-

tions F = exp(ax + by), cos(ax + by), sin(ax + by),

log(ax + by + c), exp(-a(x - 1/2)2 - b(y - 1/2)2)

and aretan(az + by). Tile s' obtained an accuracy

up to 10 -5 using a modest size, 121. set of nodes,

while locally adapting the shape parameter cj.

Tim multizone method of Wong et al. [1999]

is yet another alternative method for improving

computational efficiency. This method is readily
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parallelizable, and the conditioning of the resulting
matrices are much better.

Hon and Mao [1998] showed that an adaptive

algorithm that adjusted the nodes to follow the

peak of the shock wave can produce accurate re-

sults in 1D Burgers equation with only 10 nodes,

even for steep shocks with Re = 104.

3: "Discretization of Nonlinear Elliptic

PDEs by the MQ Method

We consider the second-order system of r_ para-

metrized nonlinear elliptic partial differential

equations

D(c_)Au - .f(Vu, u, x, y, a) = 0,
(1)

where D(a) is a positive diagonal n x n matrix that

is dependent smoothly on a, subject to boundary
conditions

=0, (2)
Ofl

Here c_ is a control parameter, and we are interested

in studying the dependence of the solutions to the

boundary-value problem (1), (2) on a.

We discretize the continuous problem by the

multiquadric radial basis function (MQ) method

[Kansa, 1990a, 1990b; Madych & Nelson, 1990] as
follows. Introduce a set @u of nodes (N internal

and Nb on the boundary)

el, = {(z,, Y,)I,=uN C _,

(xi, Y,)I,=N+I,N+N_ C Of_}

and look for the approximate solution to (1), (2) in

the form [Madych & Nelson, 1990]

j=N+Nb

Uh(X, V) = ao + Z ajgj(cj, x, V), (3)
j=-I

v.,j=N+Nb
where z-,)=l aj =- 0. We use this relationship to
eliminate a N from (3) which results in

uh(z, y)

j=N-1

= ':'o+ ,:,j(gj(cj, :,:,y) - g,,,,(cN,x, v))
j=l.

j=N+N_,

+ Z  j(gj(cj, y) - 9x(cN, y)),
j=N+I

(a)
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where a2 ,q Rn are tile unknown expansion coeffi-
cients and

this end, we first eliminate a 2 from (4) by sub-

stituting (7) into (4) to obtain

j = 1,..., N+Nb.

are the MQ basis functions, and cj > 0 are called

shape parameters [Kansa 1990b]. We then substi-

tute uh(x. y) into (1), (2) and use collocation at the

nodes fgh to obtain a finite-dimensional system

_,(a 1, a'. a)

= D(_)A_(x,, Yi)

- f(v_h(x,, v,), _h(x_, y,), _:,, w, _) = o,

i= :,..., N, (s)

b 1 a 2Wi_N(a , , a)

_h(X,v)

=ao+

j=N-I

j=l

j=N+Nb

+ _ ¢j(a I, _)(gj(cj, x, v)
#=N+I

-- gN(CN, X, y)).

(9)

We now define the map F : a 1 _ U = F(al).

For i = 1,..., N:

Ui -----(20 +

j=N-1

j=l

= fb ( Ouh(xi' g2) )On , uh(a:,, y_), z,, V_, _ = O,

i=N+I,...,N+Nb, (6)

where a 1 = (a0,..., aN-i) E R nxN, a 2 =

(aN+l,.... aN.N_) E R nxNb. \Ve next modify the

discretized system to make it more suitable for con-

tinuation and bifurcation analysis. (1) We elimi-
9

nate a-, associated with the boundary nodes, so as

to minimize the number of unknowns. (2) We refor-

mulate the resulting problem in terms of (internal)

nodal values u_ -- a_(xi, y_), i = 1 .... , N, so as to

have the correct eigenvalue problem (to avoid deal-

ing with matrix pencils) for the 3acobian matrix of

(5) for detecting bifurcations during the continua-

tion process. This is accomplished as follows.

1. We solve (6) for a 2 (assuming that the Implicit

Function Theorem is applicable here) to obtain

a 2 = tb(a 1, a), or, in components,

aj = Cj(a _, _),

j = N + 1,..., N + :\_.

(z)

Substituting this into (5) and using the notation

= (_:1,..., _N). yields

;(_, _.,(a_, _), _) = o. ;!.) _ a,_×N (8)

.) We now want to reformulate (S) in terms of the

nodal values U = (ul, u2,.... _<\) _ R "_`v. To

-- 9N(CN, Xi, yi))aj

j=N+N_,

+ _ (m(cj, _,, y,)
j=N+I

-- gN(CN, X,, /]i))wj(a I, o¢) (].0)

Finally, substituting a 1 = F-I(U) into (8),
we arrive at the finite-dimensional continuation

problem

G(U, a)=O, U,G(.) ER '_xN, c_ER, (11)

where

a(u, _)= _(r-_(u), _(r-_(u), _), _),

r" If{y -+ R N, _(') _ _nxN_

Remark 1. Note that in the case that the bound-

ary condition (2) is linear, _j are linear, and con-

sequently F is an N x N matrix.

In Sec. 5 we consider examples of continuation

of 1D PDEs with fl -- (0, 1) and 2D PDEs with

f_ = (0, 1) x (0, 1). In all 2D examples we have the
same number of nodes N_ in x and y directions. We

choose a constant shape parameter cj = s / (N_ - l ) .

Our typical choice for s is 4 < s < 12.

We use two types of node distributions. In
the case of uniform node distribution (x_, gt) --

(kh, lh), k, l = 0 .... , Ns, h = 1/N_. In the case



of nonuniform node distribution, the nodesadja-
cent to the boundary0£2 are placed at the distance

= hlh from Off, 0.1 < ht _< 0.5, while the remain-

ing nodes are distributed uniformly. A criteria for

the choice of hi was a minimum of L2-norm of the
residual in f].

4. Numerical Experiments for

a 1D Eigenvalue Problem

Accurate approximation of eigenvalue problems is

essential for bifurcation analysis of PDEs. We

have not found references in literature on the MQ-

solution of eigenvalue problems. We therefore

present here results for an eigenvalue problem for

1D Laplace operator. For details on the MQ dis-

cretization see Sec. 3. This is a scalar problem

-u" = Au, u(0) = u(1) -- 0, (12)

that has the exact solution:

(A,,, Urn(x)) = ((_m) 2, sin(_mx)),

m -= 1, 2,...

where (Am, Urn(x)) is the ruth eigenpair of (12).

Introduce the mesh xn --- nh, r_ = 0, 1,..., N,

h = 1/N, and consider the standard second-order

finite difference (FDM) discretization of (12):

un+l -- 2un + l_n--I

h2 = Au,_,
(13)

n-=l,...,N-1, Uo=ug=O.

corresponding approximate eigenpairs areThe

given by

7rm

(Ahm, U_m)= 4NZsin2_-_,

71"17l
sin m

N

7r2rn
sin

N

sin 7r(N - t)m
N

m=l,...,N-1.

We also solved (12) using the MQ discretization for
several values of the number K of internal nodes.

Denote by ()MQ, U_fQ), m = 1.... , K the corre-

sponding approximate eigenpairs.

The results of our computations are summa-
AIQ _h forrized in Table 1. We use the notation ¢_ , :_
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the relative errors in AmMQ, Ah, respectively, and the

notation ¢ MQ for the Loo-norm error in UMQ. For

each MQ solution we provide a comparison with the
FDM solution that has a sufficient number of nodes

to give the same accuracy for ,kl as the MQ method.

In Part (a) of the table we use the uniform node

distribution for the MQ method. Part (b) of the

table shows that the accuracy of the MQ method

can .be significantly improved by adapting the node

distribution: we moved only two nodes adjacent to

boundary to reduce their distance from the bound-

ary to hi = h/4 (while the remaining nodes are

distributed uniformly).

One can see that the MQ method can give a

highly accurate solution with a small number of un-

knowns, 10-100 times smaller than the number of

unknowns in the FDM for the same accuracy.

5. Numerical Experiments for

1D and 2D Elliptic PDEs

We present several examples of continuation of so-

lutions to systems of nonlinear 1D and 2D ellip-

tic PDEs. Each problem is discretized by the MQ

method described in Sec. 3. We then perform con-

tinuation of the resulting system of algebraic equa-

tions (11) with AUTO97. The principal goal of our
examples is to assess the accuracy of the detection

of bifurcation points. We compare our results with

some published results and, in one case, the results

of our computations with an example in AUTO97

and CONTENT. We will use throughout the nota-

tion K for the number of unknowns in a particular

method. For our MQ method K = n x N, where n is

the dimension of the system and N is the number of

internal nodes. We denote by MQ(u) and MQ(nu)

our MQ method with the uniform and nonuniform

node distributions, respectively.

Example 1. 1D Gelfand-Bratu equation. This is

a scalar problem

u"+Ae u=0, in_-=(0, 1),

u(o) = = o,
(141

that appears in combustion theory and is used

the demo example exp in AUTO97 [Doedel et al.

1997] (fifth-order adaptive orthogonal spline collo

cation method) and demo example brg in CON

TENT [Kuznetsov & Levitin, 1995-1997] (third

order adaptive finite difference method). There i:
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Table i. A 1D eigenvalue problem: comparison of results for eigenvMues, results for eigenfunctions.

(a) The MQ method with a uniform node distribution for K = 5, 7 and 9.

m A,_ (Exact) ,,,_x'uQ, K = 5 Rel. Err. e MQ nel. Err. e MQ Rel. Err. e_, K = 47

1 9.86961 9.86596 3.7 x 10 -4 3.7 x 10 .4 3.7 x l0 -4

2 39.4784 39.6492 4.3 x l0 -a 5.2 x l0 -_ 1.5 x 10 -a

rn A,_ (Exact) A'_: Q, K = 7 Rel. Err. e MQ Rel. Err. e MQ Rel. Err. E_, K = 76

I 9.86961 9.86821 1.4 x i0-4 " g.9 x 10 -5 1.4 x 10 -4

2 39.4784 39.4738 1.2 x 10 -4 1.8 x 10 -4 5.7 x 10 -4

3 88.8264 89.3648 6.0 x 10 -_ 1.1 x 10 -2 1.3 x 10 -3

m A,,_ (Exact) Xt_Q, K = 9 Rel. Err. Mq Rel. Err. euMQ Rel. Err. e_, K = 117

1 9.86961 9.86901 6.0 x I0 -s 5.0 x 10 -s 6.0 x 10 -s

2 39.4784 39.4846 1.6 x 10 -4 2.1 x 10 -4 2.4 x 10 -4

3 88.8264 89.1667 3.8 x 10 -a 7.3 x 10 -a 5.4 x 10 .4

4 157.913 159.689 1.1 x 10 .2 2.5 x 10 -2 9.6 x 10 -4

(b) The MQ method with nonuniform node distribution for K = 7 and 9.

rn A,_ (Exact) ,,,_XMQ,K = 7 Rel. Err. e_ q Rel. Err. euMQ Rel. Err. _, K = 3477

1 9.86961 9.86961 6.8 x 10 -s 3.0 x l0 -6 6.8 x 10 -s

2 39.4784 39.4782 3.2 x l0 -8 3.0 x 10 -4 2.7 x 10 -7

3 88.8264 88.8139 1.4 x 10 -a 6.5 x 10 -4 6.1 x 10 -r

m _,_ (Exact) ,_A_Q K = 9 Rel. Err. eMQ Rel. Err. euMQ Rel. Err. e),, K = 950

1 9.86961 9.86960 9.1 x 10 -7 2.3 x 10 -6 9.1 x 10 -_

39.4784 39.4783 1.4 x 10 -6 2.0 x 10 -s 3.6 x 10 -6

3 88.8264 88.8241 2.6 x 10 -5 1.8 x I0 -4 8.2 x l0 -6

4 157.913 157.882 1.9 x 10 .4 1.8 x 10 -a 1.5 x 10 -s

a limit (fold) point on the solution curve. We take

the value of .\ at the limit point found from demo

exp (K _> 50) as exact. Table 2 shows the compar-

ison between numerical results in [Davidson, 1997],

our numerical results and our experiments with
CONTENT.

Example 2. 1D Brusselator problem, a well-

known model system for autocatalytic chemical re-
actions with diffusion:

dl _z"
i=-_, - (b + 1)u + _2v + a = 0,

-= (15)
12

b
u(0) = u(1) = a, v(0) = v(1) = -,

a

proposed in iLefever & Prigogine. 1968]. This prob-
Iem exhibits a rich bifurcation scenario and has been

used in the literature as a standard model for bi-

furcation analysis, see e.g. [Schaeffer & Golubitsky,

1981; Golubitsky & Schaeffer, 1985; Dangelmayr,

1987; Chien et al., 1997, Eq. (24)] and [Mei, 1997].

A stationary bifurcation occurs [Chien et al., 1997,

Eq. (24)] at

dl 82 7r2rt 2
b,_ = 1 + _22 + --_dl +

12 a 2

7r2rt 2 d 2
>0.

For l = dl = 1, d2 = 2, a = 4, n = 1, 2 this

gives simple bifurcations: bl = 9 + rr2 + 8/re 2 =

19.680174, b2 = 9 + 4zr2 + 2/7r 2 = 48.681060,

correspondingly. For the second-order central dif-
ference method with uniform mesh of 41 mesh

points (K = 80 unknowns), the corresponding ap-

proximate bifurcation points were found in [Chien

et al., 1997, Sec. 6.1]. Table 3 shows the comparison

between analytical, numericaI results [Chien et al.,
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Table 2. ID Gelfand-Bratu equation: The limit point comparison.

(a) Results for the MQ method correspond to a uniform node distribution.
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[Doedel et at., 1997', [Davidson, 1997],

Exact K = 800 MQ(u), K = 5 MQ(u), K = 7 MQ(u), K = 9

,\ 3.513831 3.5137 3.512609 3.514224 3.514047

rel. error 3.7 x 10 -5 3.5 x 10 -4 -1.1 × 10 -4 -6.1 × 10 -2

(b) Results for the MQ method correspon d to.a nonuniform node distribution.

IKuznetsov & [Kuznetsov &:

Levitin, 1995-1997I, Lcvitin, 1995-1997],

K = 50 K = 500 MQ(nu), K = 5 MQ(nu), K = 7 MQ(nu), K = 9

.\ 3.51145 3.51380 3.514010 3.513809 3.513828

rel. error 6.8 ", 10 -4 8.8 x 10 -6 -5.1 x 10 -s 6.3 x 10 -6 8.5 x 10-"

Table 3. 1D Brusselator equation: Comparison for the bifurcation points.

(a) Results for the bifurcation point bx.

[Chien et al.,

Exact 1997], K = 80 MQ(u), K = 10 MQ(u), K ---- 14 MQ(u), K = 18

bl 19.680174 19.67547 19.67366 19.67786 19.67919

tel. error 2.4 × 10 -4 3.3 × 10 -4 1.2 x 10 -_ 5.0 x 10 -5

(b) Results for the bifurcation point be.

[Chien et aI.,

Exact 1997], K = 80 MQ(u), K = I0 MQ(u), K = 14 MQ(u), K = 18

b2 48.681060 48. 6004 48.57476 48.63168 48.65605

reI. error 1.7 x 10 -3 2.2 x 10 -3 1.0 x 10 -3 5.1 x 10 -a

1997, Sec. 6.1] and our numerical results for values

of bl ar.d be at simple bifurcation points•

Example 3. Pattern formation in a ID system

with mixed boundary conditions [Dillon et al.,

19941 •

dl _z'+3-_- uv _ =0
_,,[2

6_u '/+_cu--_Lv 2-v=0, in f2= (0, 1)

o,, (16)
ol _--_= p(1 - el)(e3tLs -u),

04
_e_ = 0p(1 - o._)(_:_vs - _,), on ar_ = {o, 1}.

Here 8, _ [0. 1]. i = 1. 2, 3. are homotopy parame-

ters. [:or dt = 10 -5, .z = 10 -2 . d = 0.14. 3 : 1.0,

= 0.001, (01, 02, 0a) = (1, 1, 0) (Neumann prob-

lem). Equation (16) was discretized by the second-
order central difference method with equidistant

mesh of 41 mesh points (K = 80 unknowns). Ta-

ble 4 [Dillon et al., 1994, Table 1] shows a com-

parison between analytic and numerical results for

values of l at simple bifurcation points.

Our numerical results (MQ(nu) method) witl:

K = 18 coincide with the analytic results above.

Example 4. 2D Gelfand-Bratu problem

/',u + ;_e_ = o, rt = (o, z) × (o, 1),

ulo_ = o.
(17

This problem was studied in [Schwetlick et al.. 1996

and [Doedel & Sharifi, to appear]. In [SchwetIici
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Table 4. A 1D pattern formation problem, comparison for simple bifurcation points.

[[Dillon et al., 1994], numerical] 0.047

[[Dillon et al., 1994], analytic] 0.0465

MQ(nu) 0.0465

0.080 0.093 0.159 0.140 0.238 0.186 0.317 0.232

0.0793 0.093 0.159 0.140 0.238 0.186 0.317 0.233

0.0793 0.093 0,159 0.140 0.238 0.186 0.317 0.233

Table 5. 2D Bratu equation, results for the limit point.

(a) Uniform node distribution.

[Schwetlick et al., 1996],

225 < K < 3025 MQ(u), K = 25 MQ(u), K = 49 MQ(u), K = 81

A not reported 6.8359 6.8183 6.8119
rel. error 4.1 x 10-3 1.5 × 10-3 5.6 x 10-4

(b) nonuniform node distribution.

[Doedel &: Sharifi, to appear],

Exact MQ(nu), K = 25 MQ(nu), K = 49 MQ(nu), K = 81

A 6.808124423 6.793248 6.807978 6.808232

rel. error -2.1 × 10-3 -2.2 × 10-s -1.6 x 10-S

et al., 1996] it was discretized with the second-
order central difference method with uniform mesh

and then continued using Implicit Block Elimina-

tion based on Recursive Projections. A limit point

was detected for some value of A (not reported in

the paper), and spurious limit points were detected

for K = 961, 1521, 2209, 3025 and A sufficiently

small. In [Doedel & Sharifi, to appear] the prob-

lem was discretized with a high-order orthogonal

spline collocation method with sparse Jacobian. We

reproduced the bifurcation diagram in [Schwetlick

et al., 1996]. Table 5 gives the values of A at the

limit point computed by the MQ method. The ex-

act location of the limit point is assumed to be at

the value of A obtained in [Doedel & Sharifi, to ap-

pear] on a 16x 16 mesh with 4× 4 collocation points.

See Sec. 6 for a discussion of the operation count.

Example 5. 2D Brusselator problem•

_-_Au -- (b + 1)u + + a = 0,u2u

d2
-_Av + bu - u2v = O,

b
10a= a, .Ion=-.

a

in f2 = (0, 1) x (0, 1),

,18)

A stationary bifurcation occurs [Chien & Chen.
1998, Eq. (2.26)] for

b'gr I,, El.
= 1 + dla2 + dlTr2 4- n 2

d2

a2 ( /2 )+ _ m2 +12n2 > O.

For I =dl = 1, d2 = 2, a = 4, (m, n) =

(1, 1), (m, n) = (2, 2) this gives simple bifurca-

tions: bi,1= 9 4-2rr2 4-4/7r2,b2,2 -- 94-87 r2 4- I/7r2,

correspondingly. For the second-order central dif-

ference method with equidistantmesh of 21 mesh

points,the corresponding approximate bifurcation

points are found in [Chien & Chen, 1998, Sec. 5].

Tables 6 and 7 show comparisons between ana-

lytical,numerical results [Chien & Chen, 1998,

Eq. (2.26)]and our numerical resultsfor values of

bl,I and b2,2 at simple bifurcationpoints.

A Hopf bifurcationoccurs [Chien& Chen, 1998,

Eq. (2.26)] for

bin, n= l + a 2+(dl + ds) -_- + n 2 rr2

for some m, n, and l large enough. For I = 10.

dt = d2 = 1, a = 10, (m, n) = (1, 2), this gives a



Table 6.

method.

Nonlinear Elliptic Partial Differential Equations

2D Brusselator equation: comparison for the bifurcation points, a uniform node distribution for MQ

(a) Results for the bifurcation point bl.

[Chien & Chert, i998],

Exact K = 800 MQ(u), K = 50 MQ(u), K = 72 MQ(u), K -- 98

bl, x 29.144494 29.104774 29.16280 29.17050 29.16062

re[. error 1.4 × 10 -3 -6.3 × 10 -4 -8.9 x 10 -4 -5.5 × 10 -4

(b) Results for the bifurcation point b2.

[Chien &:Chen, 1998],

Exact K = 800 MQ(u), K = 50 MQ(u), K = 72 MQ(u), K = 98

b2.2 88.058156 87.47325 87.61578 87.86924 88,00143

rel. error 6.6 x 10 -3 5.0 x 10 -3 2.1 x 10 -a 6.4 x 10 -a
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Table 7. 2D Brusselator equation: Comparison for the bifurcation points, a nonuniform node

distribution for the .MQ method.

(a) Results for the bifurcation point bl, 1.

Exact MQ(nu), K = 50 MQ(nu), K = 72 MQ(nu), K = 98

bl. 1 29.144494 29.14621 29.14726 29.14431

rel. error -5.9 × 10 -5 -9.5 × 10 -s 6.3 × 10 -6

(b) Results for the bifurcation point b2,2.

Exact MQ(nu), K = 50 MQ(nu), K = 72 MQ(nu), K = 98

b2, _ 88.05S 156 88.15470 87,93391 88.07288

rel. error -1.1x 10 -3 1.4× 10 -3 -1.7× 10 -4

Table 8. 2D Brusselator equation, results for the Hopf bifurcation point.

Exact MQ(u), K = 50 MQ(nu), K = 50 MQ(u), K = 72 MQ(u), K = 98

b_. 2 180.15 181.8625 180.7880 181.0696 180.492

reI. error -9.5 x 10 -'3 -3.5 × 10 -3 -5.1 x 10 -3 -1.9 x 10 -3

Hopf bifurcation at bl,2 = 101-'-2((1/100)+22)7r 2 =

180.15. see Table 8.

6. Discussion

1. \Ve have presented the results of our exper-
iments with the continuation of solutions to 1D

and 2D nonlinear elliptic PDEs discretized by the

MQ method. We use a small number of unknowns

and achieve a high accuracy for detected bifurca-

tion points in our examples. Here are some sample
results.

(i) For the limit point in the 1D Gelfand-Bratu

equation, the MQ method with nine unknowns

gives the relative errors 6.1 x 10 -5 and 8.5 x

10 -7 for the uniform and nonuniform node dis-

tributions, respectively. The relative error in

the third-order finite difference method with

500 nodes is 8.8 x 10 -6.

(ii) For the two bifurcation points in the 2D Brus-

selator problem, the MQ method with 98 un-

knowns gives the relative errors 5.5 x 10 -_,

6.4 x 10 -4 for the uniform node distribution

and 6.3 x 10 -6 , 1.7 × 10 -5 for the nonuniform
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node distribution. The corresponding rela-
tive errors in the second-order finite differ-

encc method with 800 nodes are 1.4 x 10-3,
6.6 × 10 -3.

(iii) For the first eigenvalue in the eigenvalue prob-
lem for the 1D Laplace operator with nine un-

knowns gives the relative error 6 x i0 -5 and
9 x 10 -7 for the uniform and nonuniform node

distributions, respectively. This is equivalent

in accuracy to 117 and 950 node solutions, re-

spectively by the second-order finite difference
method.

2. As we noted in Introduction, the MQ method

leads to systems with full matrices. Solving a re-

la_ed linear system for the number of nodes M x M
in 2D with a full M 2 x M 2 matrix by Gaussian

elimination takes 2/3M 6 + O(2_/4) operations. By

comparison, a band solver would take O(M 4) op-

erations, and a collocation method on a square

[Doedel, 1998; Doedel & Sharifi, to appear] would
take _ 62p 3M 3, where p is the number of matching

points at an edge of a finite element [Doedel, 1998].

Further work is required to carefully compare the

costs of solving linear systems and the correspond-

ing eigenvalue problems arising in discretizing el-

liptic PDEs by the MQ method and by the finite

difference, finite element, and collocation methods.

3. An increase of the number of unknowns and

especially the shape parameter result in a better

accuracy but also in a larger condition number of

the operator F mapping the nodal values of the so-
lution onto the expansion coefficients. This condi-

tion number is a iimiting factor in our experiments.

In fact. to reach high accuracy for the limit point

in the 2D Gelfand-Bratu problem (e.g. the rela-

tive error 1.6 x 10 -5 with 81 unknowns), we had

to use quadruple precision. This is a temporary

fix, as it considerably slows down computations. In

future, we plan to implement the ideas of Kansa

et aI. [1990b] to circumvent this ill-conditioning

problem.

We also found that even a simple adaptation

of the nodes adjacent to the boundary can lead to

a dramatic improvement of the accuracy in detect-

ing bifurcation points. Adaptive choice of the shape

parameter is another way to improve the accuracy

that we plan to investigate.
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Abstract 1 Introduction

Convective transport of heat and constituent components

is dominated by buoyancy driven convection in many ter-
restrial crystal growth situations. The character of natural

buoyant convection in non-uniformly heated, rigidly con-

tained inhomogeneous fluids can be drastically altered by
vibration of the container. Thereibre. vibrational induced

flow can potentially be used to influence and even control

transport in some crystal growth situations.

A parametric numerical investigation of 3D tt_ermovibra-
tional buo.vancy-driven flow in differentially heated cylin-

drical containers has been conducted to investigate ther-

movibrational transport regimes in Bridgman-type sys-
tems. The objective of the work is to assess the feasibility

of the use of vibration to suppress, or control, convection

in order to achieve transport control during cry.stal growth.

The formulation of a model for this problem is outlined,

numerical method is described and its application to the

stud,,' of investigation of thermal vibrational ,'-lows is dis-
cussed. Two types of vibration are considered: transla-

tional, and circularly polarized. The results for flows in-
duced by g-jitter and selected results for the cases of lon-

gitudinal and lateral vibrations are presented.

"cop,,.nght @200(/b.,,,A, I. Fedoseyev. Published _._"he American
Institute of Aeronautics and Astronautics. Inc.. with per:qssion.

It is generally recognized that oscillator5,, or pulsative.
flow significantly alters the transfer of mass. heat and mo-

mentum in fluid systems. For certain experiments and

operating conditions, vibrations are expected to have a

significant influence on heat and mass transfer onboard
the International Space Station (see for example, the re-

cent ESTEC Workshop proceedings [ 1]). Available flight
experiment data clearly show that, once initiated by "g-

jitter", the effects of convective flows can persist for long

times even when the g-jitter disturbance (and consequem
flow) were short-lived [2]-[7].

Control of convective transport continues to be an impor-

tant aspect of crystal growth research. Several groups are

actively pursuing control of convection using static and

rotating magnetic fields. However, magnetic fields cannot
be used for flow control in melts and solutions that are

poor conductors. Flow control through vibration or vibro-
convective mixing may offer an attractive alternative in
such cases.

Recent works have shown that the character of natural

buoyant convection in non-uniformly heated, rigidly con-

tained inhomogeneous fluids can be drastically altered by
vibration of the container. A review and relevant theoret-

ical and experimental research can be found in publica-
tions [1]-[13], Thus, vibrational induced flow can poten-

tially be used to influence and even control transport in

some crystal growth situations. A practical quantitative
understanding of vibrational convection as a control pa-
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rameterincrystalgrowthsituationsiscurrentlynotavail-
able.Theobjectiveoftheworkistoassessthefeasibility
oftheuseofvibrationtosuppress,orcontrol,convection
inordertoachievetransportcontrol during crystal growth.

2 Problem formulation and numeri-

cal method

Buoyancy driven vibro-convective motion occurs when

oscillatory displacement of a container wall induces the
acceleration of a container wall relative to the inner fluid.

If the fluid density is nonuniform, fluid motion may ensue.

The magnitude of this motion depends on the orientation

of the vibrational direction with respect to the local den-
sity gradients. It should be noted that even in case of a

constant density, fluid subject to spatially nonuniform vi-

bration, fluid motion can also occur (for example, angular
vibration [ 111).

To properly investigate influence of translational and cir-
cularly polarized vibration necessitates the use of the full

3D equations governing the transport of heat, mass and
momentum. Selected examples of our ongoing work on

this topic are outlined below.

We consider a purely thermo-vibrational convection in a
differentially heated cylindrical cavity. The fluid is taken

to be Newtonian. and the Boussinesq approximation is as-

sumed to hold. The calculations were performed for iden-
tification and characterization of thermovibrational flow

and are pan of an ongoing project involving flow visual-

ization model experiments being conducted by Feigelson

[lo1.

2.1 Governing equations

Translational vibration corresponds to a linear displace-

ment such as, for example, u = dcosmt, where d is a

real vector giving the displacement magnitude and m is
the frequency. In this case the ampoule is displaced back

and forth upon the same line. Polarized vibrations are
characterized by a displacement u = Re{de i_}, where
d =dl - id2. Here the instantaneous vibration direction

rotates in the polarization plane defined by the real vec-
tors d_ and d2. A sketch showing both translational and

circular polarized vibrations is presented in Fig. 1. In a ref-
erence frame fixed to a vibrating ampoule, these types of

vibrations result in the following form of the momentum
equation:

g + (VV)V = -Vp + PrVZV + RarPr" (0 + o_C)nv+

Ra_Pr. (0 + etC)f(g2, t)

while the continuity equation:

(1)

V.V=0 (2)

• enei'ey equation:

3®

+ (vv)o = v2o (3)

and species transport equation:

3C
at + (VV)C = PrSc-IV2C (4)

where length, time and velocity are scaled, respectively,

by Ro, R_/_ and _/Ro. Here Ro is the ampoule radius and

_¢is the thermal diffusivity. The nondimensional concen-
tration and temperature, are given by ® and C, respec-

tively. The function f(f/,t) is the acceleration of the vi-

brating ampoule and D. = coR_/_ is a dimensionless fre-

quency; n e = (sin(a,0,cos0). The Prandtl, Schmidt. ther-
mal and solutal Rayleigh and vibrational Rayleigh num-

bers and the buoyancy ratio are, respectively, given by

Pr = v v _ Ras = ocRaT_,Sc=-6,Rar= v_ ,

a = _,.c,/(fYAT), Ra_- = ,lm'-.arR'
VK

Here [3 and [3c are the thermal and solutal expansion co-
efficients and AT, c_, g, m, d, k, v, D are the character-

istic longitudinal temperature difference, reference con-
centration in the melt, gravitational acceleration, vibra-

tional displacement amplitude and frequency, direction of

gravity,, kinematic viscosity and solute diffusivity, respec-

tively. The dimensionless number Ra_- is the vibrational
Rayleigh number and Ra*., = otRa_..

The boundary conditions for eq. (1)-(3) are: (i) the non-

slip condition for the velocity, V = 0, on the walls, and
(ii) the given wall temperature distribution, ® = ®w. An

undefined constant in the pressure field is excluded by set-

ting p(xo,Y0,Zo) = 0 at some location (xo,Y0,Z_).

Equations (1) are solved together with the equations gov-

erning heat and species transfer (3),(4) and the condition
that the velocity is divergence free (2).

2
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2.2 Finite elementsolutionmethod

Tile equationsaresolvedin primitivevariableform
(,velocity-pressure,temperature,concentration,etc.)us-
ingaFiniteElementMethod.

Finiteelementmethodwith regularization for the

Navier-Stokes equations

This method (RNS) was proposed in [15]. [16] for high

Re number tlows. It was shown that such a regularization

works also well in case of flows with thin boundaw lay-

ers. even with few mesh nodes placed inside tile boundary'

laver [ 17]. [ 18]. For the considered problems, the conti-
nuity equation (2) is modified as follows

V.V = zV.(Vp-F)

code [14]. The regularization proposed makes a solution
procedure very efficient.

A high accuracy solution iterative CGS-like method using
preconditioning by high order incomplete decomposition

has been implemented. This allowed us to obtain high-

precision solutions with accuracy up to 10 -9. The prccon-

ditioning also reduced the computation time by one to two
orders of magnitude and the memory size by a factor of S

• for3D flows compared to currently available commercial

codes (e.g. CFD2000) [24]. This approach makes it possi-

ble to solve large time-dependent problems (up to 300.000

unknowns) with reasonable computation times. A typical
solution time for a transient problem is few hours on a SGI
02 workstation.

(5) 2.3 Benchmarks

where z is a small regutarization parameter, and F is a
body force in eq. (1) for the thermo-vibrational convec-

tion. For z ---+0 we approach the original equation (2). A
boundary condition for tile pressure on the wall is

(V t, - F). n = 0, (6)

where n is a unit wall normal vector. Eq. (5) and (6)

present the main feature of this method, and ensure the
balance of the component of tile force normal to the region
boundary.

Another advantage is that this approach allows to use the

same order finite element approximation for tile veloc-

ity, pressure, lenlperature and concentration with all un-
knowns located at the same nodal points. For a justifica-

tion of this regularization one can be referenced to the new

hxdrodvnamic equations proposed in [19] that have simi-
lar _]uctuation ternls. L/Jhner has also shov,'n that similar

terms actually appear in the discrete equations as a result
of different order tinite element approximations used for

interpolation of velocity and pressure [20].

The continuity equation 15_ and momentum equations (I)

are solved simultaneously at each time step. This elimi-
nates many problems related to boundary conditions and

places only slight limitations on the time step size for tran-

sient pr_qqenls tdue to the physical nature of the problem)•

3D CFD software

We implemented the above 3D model of vibro-convective
buovanc\-dri;'en flow in differentially in the FEMINA/3D

This code was carefully tested on benchmarked exper-
imental, theoretical and numerical data tbr a variety

of 2D/3D viscous and thermo-convective tlow problems

[18], [16], [17]. Here we present some selected examples:

Three dimensional thermal convection in a cylinder

The method bees applied to the problem of convective 3D
flow in differentially heated horizontal cylinder. The ex-

perimental data by Bogatirev et al [21] have been used

for comparison. These data have been obtained during
ground tests for the device, the thermal convection sen-
sor, before it was flown on Mir station. Numerical re-

suits from the 3D finite volume simulations by Bessonov

[22] have been also used for comparison. The temperature
distribution on a cylinder wall was (i) linear temperature

profile, and (ii) computed using a real, finite wall con-
ductivity (adjoint problem). The body force in eq. (1)
is F = (O,O,RarPr®), no vibration was applied. The

Rayleigh numbers is in the range from 103 to 1.2- 10s.
The value of "t* used was 10 -7 to 10 -3, and it did not

change noticeably the results. Results are shown in Fig. 2.
An agreement with the experimental data for Rat > 4.10 a

is quite good in the case (ii), when a real linite wall con-

ductivity has been taken into account.

Two dimensional and three dimensional lid-driven

cavity problem

We compare our results with experimental data obtained
by Koseff and Street [23] for isothermal flow at Re =

3
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3200and10 4. We solved equations (1) and 15) numeri-

cally for the unknowns (V, p) in the 2D region (x,z) =

[0, 1][0, 1]. The 3D version of the problem corresponds

to the Koseff & Street experiment [23] with the domain

(x,y,-) = [0, I][0, 3][0, 1]. The boundary conditions are:
V = (u, v, w) = ( I, 0,0) at the driven lid (z = 1): V = 0 on

the other walls, and, (Vp • n) = 0 on all the ;vails. The

undefined constant in the pressure field is eliminated by
setting pressure p = 0 at (x,y,z) = (0,0,0).

Fig. 3 and 4 present the experimental measurements and

nurnerical results for u and w velocity components ob-
tained by our method, RNS, by solving the original NS

equations (1), (2), and by using a 2D k- e model with

commercial code [24]. The experimental data are shown

for the symmetry plane (x,z) at y=1.5 along the lines x

=0.5 and z =0.5 of the 3D cavity, that has relative dimen-
sions (x:y:z) = 1:3: I. Tile experimental points correspond

to time averaged values of the measured velocities [23].

The results obtained with our model, eq. (1), (5) and

(6) are in good agreement with the experimental data for

Re=3200 and 10,000 and are an improvement upon previ-

ous results obtained by solving the NS equations (I), (2).

Magnetic field suppression of convective flow

Numerical solution for thermal convection flows in a

semiconductor melt with strong static magnetic feld ap-

plied is presented in Fig 5. Although the generated flows
ttave extremely low velocity because of the large Hart-
mann numbers (Ha = 20 to 2000). the numerical solu-

tion of the governing equations involved is very, compli-
cated due to the thin boundary layers. Different numerical

methods have been tested for the solution of this problem

[17]. The best results have been obtained with the pre-

sented RNS approach. It can provide the numerical solu-
tions in a wide range of Ha numbers (up to 10*), while
other methods failed for Ha > 20. The RNS results com-

pare favorably with the asymptotic theoretical solutions,

Fig. 5c.

3 Thermal vibrational convection.

Results and discussion

A parametric study of translational and circular polarized
vibrations under typical microgravity and terrestrial con-

ditions for typical semiconductor melts was performed. A

snapshot of a typical tlow pattern for translational vibra-
tion is presented in Fig. 6. Even in the _otal absence of

gravity the vibrations have resulted in detectable flows.
For the cases examined, the temperature distribution re-

mains almost unperturbed (due to the low Pr and weak

flow strength).

The angle between the direction of vibration and the am-
poule has been studied for translational vibrations in the

presence of an axial temperature gradient. At high fre-

quencies and when the angle is zero, no influence of tile
v(bration on the/tow was observed, even when vibrational

the i_aleigh number is very high. The maximum observed

effect corresponds to an angle of 90 degrees. Here trans-

port is significantly enhanced.

The influence of vibrations on heat and mass transfer be-

comes significant for oxide melts due to their low thermal

diffusivity (Pr ,,., 10). These flow patterns are shown in

Fig. 7 for the case of circular polarized vibration. Initially
(at time t = 0), the species concentration was c = 1 at the

lower quarter of the cylinder and c = 0 elsewhere. Tile
evolution of the species concentration (process of mixing)

is shown in Fig. 8 together with minimum and maximum
values of velocity (for the whole domain) components.

Complete mixing occurs in about ten seconds. The heat
transfer (local Nusselt number at the top and the bottom)

is also enhanced by about an order of magnitude. If the

frequency of vibration is high, of the order of 100 Hz (for
fixed Ra), then the changes in heat and mass transfer due

to vibrations become less significant. This corresponds to

earlier experimental observations [7],[8].

Our results show that both translational and circular po-
larized vibrations can cause average melt flow for a range

of parameters typical of practical semiconductor grov,,th.
For a given vibration amplitude and frequency, circular

polarized vibrations result in more intensive melt flows
than translational ones.

The influence of forced vibration on g-jitter induccd flows

using typical SAMS micro acceleration data from the

USML-2 mission was also investigated. Motivated by the

predictions of the averaged equation theory presented in
Re/". {11], translational vibration was applied parallel to

the ampoule axis (and thus, the temperature gradient) in

an attempt to damp unwanted irregular time-dependent
flow caused by g-jitter Fig. 9a). While the flow varia-
tion with time becomes more regular, we did not succeed

in completely suppressing the g-jitter flow (Fig.9b,c).

We found that the use of the same amplitude vibration

in the direction orthogonal to the ampoule axis is more
effective. This induces intensive thermal vibrational flov,,s

and flow disturbances due to g-jitter become practically

insignificant (Fig. 9d).
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Conclusions [5]

The influence of translational and circularly polarized vi-

bration in analysis in a model Bridgman melt growth con-

figuration was investigated. The nature of the flows pro- [6]
duced by the types of vibration under consideration ne-

cessitated the use of the full 3D equations governing the

transport of heat, mass and momentum. The governing

equations were solved numerically. Flow patterns for . [7].
translational and circular polarized vibrations and g-jitter
microaccelerations were analyzed. For translational vi-

bration, thermovibrational flow is strongly dependent on

the angle between the vibration direction and the tempera-

ture gradient. Circular polarized and rotational vibrations
result in more intensive melt flows than translational ones. [8]

The simultaneous action of g-jitter and translational vibra-

tions is currently being study from the viewpoint of using

applied vibration as a means of flow control.
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Figure 1: Translational vibration (a), dl or d, = O, and

polarized vibration (b), dl,d2 = 0; (p is the angle between

gravity vector and axis of ampoule, a is the angle between

direction of vibrations and axis of ampoule
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Figure 6: Typical instantaneous 3D melt flow patterns for

translational vibration at Og, Ra = O, Ra,, = 7.25- 104,

Pr = 0.01, co = 100Hz, lateral vibration: velocity compo-

nents Vx, Vy, Vz, pressure P. temperature T, temperature

disturbance AT, and velocity module• White color desig-

nate the maximal value plotted, black one - the minimal

value. Vibrations are applied along x-directions (horizon-

tal)

Figure 5: Thermal convection suppression by magnetic

field. D = 2, H = 1, Ra = 1.25- 105 , Ha = 21-0 (B -

5.0Tesla): stream function (a), vertical velocit? profile

Vy(x) at v = 0.25 _b), Summary of magnetic field sup-

presion of the flow for H - 1, D = 2: maximum value of

horizontal (radial] velocity versus B (c). Predicted theo-

retical asymptotic dependence V,,,_ _ Ha-'- is observed

Figure 7: Instantaneous 3D flow patterns for circular po-

larized vibration, Ra = 7.25.103, Ra). = 7.4.106, Pr = 15.

to = 10Hz: velocity components Vx, Vz, temperature T,

concentration C, velocity module, and temperature distur-

bance DT. White color designate the maximal value plot-

ted. black one - the minimal value.
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Abstract

A numerical solution for thermal convection flows in a

semiconductor melt with strong static magnetic field ap-

plied is presented. Although, the generated flows have ex-

tremely low velocity, the numerical solution of the govern-

ing equations involved is very complicated due to the thin

boundary layers. Rectangular cavity with different aspect

ratios and gravity direction aligned and misaligned with

the magnetic field vector are considered. Three numerical

methods are compared. It is shown that the finite element

approach with regularization can provide the numerical so-

lutions in a wide range of Ha numbers (up to 104). The

results compare favorably with the asymptotic theoretical
solutions.

1 Introduction

The application of magnetic fields is one of the most

promising approaches for the reduction of convection

during directional solidification of electrical conductive

• Copyright @2000 by A. I. Fedoseyev. Published by the American
Institute of Aeronautics and Astronautics, Inc,. with permission.

melts (semiconductor crystals). Current technology allows

the experiments with very strong static fields (up to 80

KGauss) for which, based on the simple scaling analysis

in stabilized systems (vertical Bridgman method with ax-

ial magnetic field), nearly convection free segregation is

expected, [ 1].

However, the reported experimental studies have yielded

controversial results [2,3]. The computational methods are,

therefore, a fundamental tool in the understanding of the

phenomena accounting during the solidification of semi-
conductor materials. Moreover, effects like the bending

of the isomagnetic lines, different aspect ratios and mis-

alignments between the direction of the gravity and mag-

netic field vectors can not be easily analyzed with analyti-
cal methods.

The reported numerical results are not able to explain the

experimental data[4,5]. Although the generated flows are

extremely low, the computational task is complicated be-

cause of the thin boundary layers [6].

Here, three different numerical approaches we have used

for comparison, :

(I) The spectral method implemented in [7l,

(2) The finite element method with regularization for

boundary layers [8],

1
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(3)Themultiquadricmethod,anovelmethodwithglobal
radialbasisfunctions[9].

Theresultsobtainedbythesethreemethodsarepresented
fora widerangeof Hartmannnumberscorrespondingto
magneticfieldsB from 0.05 to 5.0 Tesla (0.5 to 50.0

KGauss). Comparison and discussion of accuracy, effi-

ciency, reliability and agreement with the asymptotic so-

lution are presented.

2 Governing equations

The two dimensional steady state thermal convection of in-

compressible viscous fluid (melt) in a rectangular ampoule

of diameter D and hight H was considered. More general

cases are discussed in [17], [18], [19]

The governing equations (Boussinesq approximation) are :

The momentum equation:

(VV)V - PrV:V + Vp = RaPr. 6).% + F

while the continuity equation:

(1)

V.V=O

and energy equation:

(2)

(vv)o = 72(3. (3)

where length, time and velocity are scaled, respectively, by
L, L2/K and K/L . Here L is the smallest of the ampoule

diameter D and hight H. and _; = _ is the thermal diffu-
sivity of the melt. F is a body force due to magnetic field

(Lorentz force). For an axially symmetric configuration

the Lorentz force is given by

F = PrHa2[(V x eft) x eR] = (PrHa2VI, O) (4)

in the two-dimensional case, where V1 is the horizontal

component of the velocity. It does not depend on elec-

trical potential, because the electrical potential is uniform

(VO = 0), when a vertical magnetic field is applied ( see,

for example. [1]). This is not valid if the symmetry is

broken, when the magnetic field direction and the gray-

it,,, vector are slightly misaligned. However, to simplify

the study, we neglect this effect. According to [1], Joule

heating due to electromagnetic field can be neglected as

well. The nondimensional temperature ® is scaled by

{9 = (T-Tcot.o)/AT,= GL, G is a vertical temperature

_,. The Prandtl, Rayleigh and Hartmann num-gradient

bers are, respectively, given by

Pr = _v _ATgL3 V_p_¢, Ra = v_¢ , Ha = LBo

Here [3,g,v, p, o" are thermal expansion coefficient, gravita-

tional acceleration, kinematic viscosity, density and elec-

tJ'idal'conductivity, and B0 is the magnetic field intensity,

e8, eB area unit vectors in the direction of gravitational ac-

celeration and magnetic field.

The boundary conditions for eq. (1)-(3) are: (i) the non-

slip condition for the velocity, V = 0, on the walls, and

(ii) the given wall temperature distribution, e = y on side

walls, and OB = -Oo(x- L) 2 at the bottom. The latter

condition represents a parabolic temperature distribution at

the bottom boundary. To exclude an undefined constant in

the pressure field we set p(xo,Yo) = 0 at arbitrary location

(xo,yo).

3 Problem parameters

The problem was solved using properties for Germanium

(Ge) melt exposed to magnetic field having intensity B0 in

a range from 0 to 5 Tesla (and in few cases up to 50 Tesla);

the direction of magnetic field vector is axial, eB = (0, l).

The corresponding Hartmann number varies from Ha = 0

to 2170 (and in few cases to Ha = 2.17. 104). Ampoule

geometries considered are (a) L = 1cm, H = 2cm, and (b)

L = 2cm, H = Icm .

Solutions were obtained for the temperature gradient on a

side wall G = 70K/cm. The average temperature gradient

on the bottom (solid/liquid interface) was 0.5 K/cm. The

corresponding Rayleigh number is Ra = 1.24.105. Earth

gravity g was considered to be (i) aligned to the magnetic
field direction, g = g0(0, - 1) and (i) misaligned by 0.5 de-

grees.

4 Numerical methods

Three numerical methods were used to solve the system of

eq. (1) - (3) for the boundary conditions and parameters

given above.

2
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4.1 Spectral element method

By using the spectral element method (SEM) code NEK-

TON [7], the domain was divided into quadrilateral ele-

ments, refined near the walls (Fig. la), and 8 x 8 Cheby-
shev polynomials ate used inside each element for field

variables approximation. Total number of elements in our
tests was 362, and total number of unknowns was about
5.10 4 .

4.2 Finite element method with regulariza-

tion for the Navier-Stokes equations

The finite element method with regularization for the

Navier-Stokes equations (FEMR) was proposed in [8] for

high Re number flows. It was shown that such a regular-

ization works well in case of flows with thin boundary lay-

ers, even with few mesh nodes placed inside the boundary

layer. For the present problem, the continuity equation (2)
is modified as follows

V. V = eV. (Vp- F- RaPt. O. eg) (5)

where x is a small regularization parameter. For "r _ 0 we

approach the original equation (2). A boundary condition

for the pressure on the wall is

(V p - F- RaPr. 19. eg) .n = 0, (6)

where n is a unit wall normal vector. Eq. (5) and (6)

present the main feature of this method, and ensure the

balance of the component of the force normal to the region

boundary.

Another advantage is that this approach allows to use the

same order finite element approximation for the velocity
and pressure with all unknowns located at the same nodal

points. For a justification of this regularization one can be

referenced to the new hydrodynamic equations proposed

in [10] that have similar fluctuation term. Similar terms
have been obtained as a result of the consistent treatment of

time-advancement for the divergence-equation by Lghner
(see [11]). Lghner has also shown that similar terms actu-

ally appear in the discrete equations as a result of different

order finite element approximations used for interpolation

of velocity and pressure.

The numerical solution is insensitive to the value of "r.

The value of x should be chosen within the range 10 -8 to

10 -4. For a smaller value of z the discrete equations be-

come nearly incompatible, and numerical solution exhibits

strong spatial oscillations.

The simplestlinear finite elements were used for numerical

approximation of velocity, pressure and temperature. We

used triangular meshes with 40 x 100 and 80 x 100 nodes

refined near the walls (Fig. lb). The results obtained on

these meshes are very close, so we used 40 x 100 mesh for
most of the runs. Total number of nodes and unknowns

is respectively 4000 and 16.103. FEMINA/3D CFD code

(Finite Element Method IN Applications) [12] was mod-

ified to implement proposed regularization method. Dis-

crete finite element equations corresponding to (1), (5), (3)

were solved together simultaneously by CNSPACK solver

[12] using the CGS-type iterative technique and high order

preconditioning by incomplete decomposition.

4.3 Multiquadric radial basis function
method

The Multiquadric Radial Basis Function (MQ) Method is a

novel meshless collocation method with global basis func-

tions. The concept of solving partial differential equations

(PDE) using radial basis functions (RBFs) was introduced

by Kansa in 1990 [9]. He implemented this approach for

the solution of hyperbolic, parabolic, and elliptic PDEs us-

ing the MQ RBFs proposed by Hardy [13],[14] for inter-

polation of scattered data.

An RBF is a function that depends only upon the dis-

tance between a point (x,y) and a reference node (xj,yi).

Among studied RBFs still only the MQ RBFs are proven

to have an exponential convergence for the function in-

terpolation [16]. A MQ RBF is given by gj(x,y) =

v[(X _ xj)2 + (y _ yj)2 + c_ , where cj is called the shape

parameter. The numerical experiments for parabolic and

elliptic PDEs by Kansa [9] show high accuracy and effi-

ciency of the MQ scheme. A brief review on MQ RBF for

the solution of PDE can be found in [15] and on the RBF-

PDE Web site [22]. This approach results in modest size

systems of nonlinear algebraic equations which can be ef-

ficiently solved by using widely available library routines
and linear solvers for dense matrices.

For a given set of N nodes in the domain and at the bound-

ary, the solution for unknown V, p or O is approximated

as a sum of MQ functions with the coefficients as un-

known. These coefficients are found by collocating gov-

erning equations at the internal nodes and boundary condi-

tions at the boundary nodes. Nonlinear algebraic system is

solved by Newton method.

We used up to 25 × 25 uniformly distributed nodes and

constant shape parameter cj = co = const for all functions
• Total number of unknowns is 2500.
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5 Results and discussion

5.1 Convection in rectangular cavity with
H/D=2

The tests below represent the case of melt zone with aspect

ratio H / D = 2.

5.1.1 Flow without magnetic field

The nondimensional parameters are: Pr = 0.006, Ra =
1.25.105 , Ha=OD= l,H=2andL=D. The temper-

ature distribution at the bottom is given by Ot_ = -3.575.

10-3(1 - 4x2). The results for the case (x = 0 (ix is the

angle between the gravity vector and the vertical axis) are

shown in Fig. 2. The solution obtained by all three meth-
ods are close to each other.

The flow pattern consists of two counter-rotating symmet-

ric cells, located at lower corners. The perturbation of the

temperature distribution resulting from O = y, set on the

wall. can not be observed on the plot. Note that the tem-

perature field is suppressing the flow, which is caused by

the horizontal temperature gradient at the bottom.

If the gravity direction is misaligned with the ampoule axis

by 0.5deg, flow pattern becomes quite different. A nor-

mal to the gravity component of the temperature gradient
becomes a main reason for the thermal convection. A sin-

gle roll is formed, while the magnitude of melt velocity is

higher by a factor of two to three.

5.1.2 Flows under magnetic field

B = 0.05 Tesla. Ha=21.7. The MQ method did not yeld

a solution, because the Newton method did not converge

(since the Jacobian becomes ill-conditioned).

The solution by the SEM and FEMR methods show no-

table difference. The SEM solution for the velocity field
exhibit numerical oscillations between the mesh nodes.

The flow pattern from FEMR is the same as in the ab-

sence of magnetic field (Fig. 3). Vertical velocity profile

at v = 0.25 shows a boundary layer. The flow velocity is

decreased by about a factor of two.

B = 0,5 Tesla, Ha=217. The boundary layer becomes very

thin. and the flow velocity is about two order of magnitude

lower compared to B = 0. The velocity profiles from the

SEM computation exhibit spatial oscillation with velocity

sign change between mesh nodes. The FEMR can provide

the results still without difficulty, the velocity profiles re-
main smooth.

B = 5.0 Tesla, Ha=2170. The results from the SEM com-

putation showed strong numerical instability. The FEMR

solution is still quite reasonable: the flow pattern is about

the same, but flow velocity is about two order of magnitude

lower than in previous case B = 0.5 Tesla. The boundar2,.'

layers become extremely thin (0.01cm), and therefore al-

most invisible on a plot (Fig.4).

In case of a misalignment of gravitational acceleration with

ampoule axis, the flow pattern changes to one big cell for
this and all other values of magnetic field considered.

B = 50 Tesla, Ha=21700. This was done just to test the

ability of proposed FEMR method, the solution still re-

mains smooth with even three times more thin boundary

layer compared to B = 5.0 Tesla.

Stretching of the stream lines by the magnetic field demon-

strated in Fig. 5 for all the cases above (aligned gravity

vector) plus additional case B = 0.005 Tesla, Ha=2.17.

This effect is mentioned in many papers schematically, but

computational results were never shown.

5.1.3 Discussion

Figure 6 shows the maximum radial velocity calculated.

using the FEMR method, for different values of the im-

posed magnetic field B. The maximum of horizontal (ra-
dial) velocity versus B is presented by few curves, marked

as "Vr(b)" for FEMR on 40x100 uniform in vertical di-

rection mesh, by "Vr(f)" for 40x 100 refined near all walls

mesh and by "Vr(d)" for 80x 100 mesh refined at the walls.

Results for misaligned case are presented by the curve.

labeled as "Vr(a = 0.5)". We can observe a predicted

asymptotic dependence V,,,,u ,,., Ha -2 for all the cases,

starting from about B = 0.05 Tesla (Ha ,_ 20), in accor-

dance to asymptotic given in [ 1].

The main difficulty of this problem is a viscous flow with

thin boundary layer. Despite the fact that actual flow ve-

locities are very low and the Reynolds number obtained

using the computed velocities, is Re _ 10 -1 to 10 -6 , a big

value of the Hartmann number results in a relatively small

coefficient at the highest derivative of the velocity in the

momentum equation. Solution of such a problem exhibits

thin boundary layer with the thickness 8 ,-., Ha -t, and the

the "equivalent" Reynolds number Re,,_v ,-, Ha 2, for B=0.5

Tesla Reeov = 4.7.104 and B=50.O Tesla Reeqv --- 4.7.10 s.
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5.2 Thermal convection in cavity with aspect

ratio H/D=0.5

The following tests present the case with aspect ratio

H/D = 0.5, D = 2, H = 1. The temperature distribution at

the bottom is given by ®8 = -7.150.10-3(1 -.r 2).Applied

axial temperature gradient is also G = 70 K/cm.

Flow without magnetic field

The solution obtained by all three methods are also close

to each other. The flow pattern consists of two counter-

rotating symmetric cells, that occupy most of the volume,

Fig. 7.

In the case of the gravity misalignment with the ampoule

axis direction by 0.5deg, the axial temperature gradient

becomes a main driving force for the thermal convection.

This results in the change of flow pattern that becomes con-

sisting of one big convective cell.

Flow with magnetic field

The results are shown in Fig. 8. Again when Ha number

is high. all the methods except FEMR, exhibit the same

difficulties as in a case of aspect ratio H/D = 2. A sum-

mary of the results is shown in Fig. 9. The suppression of

the flow is essentially same efficient as before with similar

asymptotic dependences V,,,o___ Ha -2. The velocity pro-

file in the boundary layer obtained by FEMR is shown in

Fig. 10. One of the advantages of FEMR is that its so-

lution remains smooth even at the big change of the slope.

We can see that the thickness of the vertical boundary layer

is in agreement with asymptotic solution, 5 ,,_ Ha -l. The

tangent velocity derivative at the boundary decreases with

Ha number as _ _ -_ --, Ha-I .

Comparing between Fig. 6 and 9 it is found that misalign-

ment's impact on the reducing of the convection is more

important for aspect ratio 1.

Conclusions

We compared three different numerical methods for the so-
lution of thermal convection flows in a semiconductor melt

with strong static magnetic field applied. These are spec-

tral element method, finite element method with regular-

ization t'or the Navier-Stokes equations and multiquadric

method, a method with global basis functions. Although

the generated flows are extremely low, the computational

task is very complicated because of the thin boundary layer

at high Hartmann numbers, Ha >> I. We considered melt

region geometry with different aspect ratios, and gravity

direction aligned and misaligned with the magnetic field

vector. The comparison shows that the finite element ap-

proach with regularization can obtain stable and reliable

solutions in a wide range of Ha number, up to l0 4. These

results compare favorably with asymptotic solutions.

• Tho main difficulty of this problem is that a flow has a very

thin boundary layer. Despite the fact that actual Reynolds

number is very low, Re ,,_ 10 -t to 10 -6 , a high value of

the Hartmann number results in a relatively small coef-

ficient at the velocity Laplacian in the momentum equa-

tion. Solution of such problem exhibit thin boundary lay-

ers with related, like for high Reynolds number flows, dif-

ficulties. That is one of the reasons for the discrepancy in

the results that numerical studies reported. Both the spec-

tral method and the multiquadric method with global basis

functions needs improvement to deal with thin boundary

layers. Multilevel approximation by Fasshauer [20],[21]

can be one of the ways.

Numerical solution of these problems by available com-

mercial CFD codes may be not efficient or not possible.

Adaptive algorithms can be a promising solution. Devel-

opment of more accurate and efficient solution methods for

this problem is necessary.
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(a) (b)

Figure 1: Mesh used in the spectral element method (a), 362 elements, 8 x 8 Chebyshev polynomials approximation
inside each element, and mesh used in the finite element method (b), 4000 nodes, 8,000 triangle elements.
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Figure 2: Thermal convection without magnetic field for geometry 1, D = 1, H = 2, Ra = 1.25. 105: temperature

distribution (a), stream function (b), and vertical velocity profile Vy(x) at y = 0.25 by SEM and FEMR methods (c).

velocity scale is 0.225 cm/s.
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Figure 3: H/D = 2, Ra = 1.25x105, Ha = 21.7 (B=0.05 Tesla). Stream functions for gravity vector (a) aligned and (b)

0.5 degrees misaligned relative to the vertical direction. (c) Nondimensional vertical velocity profile Vy(x)/(0.225 crn/s)

calculated using the FEMR method 0.25 H from the bottom of the cavity (y/H =0.25)

8

American Institute of Aeronautics and Astronautics



, . /,

[a)

T ¸

(b)

Qa

(c)

Figure 4: Thermal convection with magnetic field for geometry I, D = I, H = 2, Ra = 1.25.105, Ha = 2170.0(B =

5.0Tesla): stream function (a), and vertical velocity profile Vy(x) at y= 0.25, velocity profile Vy(x) for misaligned by

0.5 degree gravity direction at _, = 0.5 (c).
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Figure 5: Streatching of the flow streamlines with increasing magnetic field, (a) B = O, (b)B = 0.005 TesIa, and (c) to

(f) correspond, respectively, to B = 0.05,0.5,5,0 and 50.0 Tesla" 10
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Figure 6: A summary of magnetic field suppresion of the flow for H = 2, D = 1. Maximum value of horizontal (radial)
velocity versus B: Vr(b) on 40x100 uniform in vertical direction mesh, Vr(f) for 40x100 refined near walls mesh, and
Vr(d), 80x 100 mesh refined at the walls. Predicted asymptotic dependence V._x ... Ha -2 is observed for all the cases
including the misaligned one, starting from about B = 0.25 Tesla.
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Figure 7: Thermal convection without magnetic field for D = 2, H = I, Ra = 1.25- 105: stream function (a), stream

function for misaligned configuration (b), vertical velocity profils by SEM and FEMR, Vy(x) for (a) at 3' = 0.25 (c), and

for (b) at v = 0.5 (d), velocity scale is 0.225 crrds.
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Figure 8: Thermal convection with magnetic field, D = 2, H = 1, Ra = 1.25.10 s, Ha = 2170(B = 5.0Tesla): stream

function (a), same for misaligned case (b), vertical velocity profile Vy(x) for (a) at y = 0.25 (c) and vertical velocity
profile Vy(x) for (b) at y = 0.5 (d), velocity scale is 0.225 cm/s.

VELOCITY V5 MAGFIELD, H=I ,_2

_TESt.A)

Figure 9: Summary of magnetic field suppresion of the flow for H = 1, D = 2: maximum value of horizontal (radial)

velocity versus B for aligned and misaligned configurations. Predicted asymptotic dependence V,,m ,', Ha -2 is observed
for both cases.
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Figure 10: The velocity profile in the boundary layer (X coordinate from -1.0 to -0.95 ) with increasing the magnetic

field for geometry 2, D = 2, H = 1, Ra = 1.25.105 : (a) to (d) correspond, respectively to B = 0, 0.5, 5.0 and 50.0 Tesla.

The velocity amplitude decreases as Ha -z and its gradient on the wall decreases as Ha- l with increasing the Hartmann

number Ha.
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Abstract

The .MultiquadricRadialBasisFunction(MQ) Method isa recentmeshlesscollocationmethod with

globalbasisfunctions.Itwas introducedfordiscretizingpartialdifferentialequations(PDEs) by Kansa

in early nineties. The MQ method was originally used for interpolation of scattered data, and it was
shown to have exponential convergence for interpolation problems.

In [11] we have extended the Kemsa-MQ method to numerical solution and detection of bifurcations
in 1D and 2D parametrized nonlinear elliptic PDEs. We have found there that the modest size nonlinear
systems resulting from the MQ discretization can be efficiently continued by a standard continuation
software, such as AUTO. \Ve have observed high accuracy with small number of unknowns, as compared
with most known results from the literature.

In this paper we formulate an improved Kansa-MQ method with PDE collocation on the boundar_j
(MQ PDECB): we add an additional set of nodes (which can lie inside or outside of the domain) adja-
cent to the boundary and, correspondingly, add an additional set of collocation equations obtained via
collocation of the PDE on the boundary. Numerical results are given that show a considerable improve-
ment in accuracy of the MQ PDECB method over the Kansa-MQ method, with both methods having
exponential convergence with essentially the same rates.

Keywords: Radial basis functions, multiquadric method, numerical solution, continuation, bifurca-
tions, nonlinear elliptic PDEs.

1 Introduction.

The Multiquadric Radial Basis Function (MQ RBF or, simply, MQ) method is a recent meshless collocation

method, with global basis functions, for discretizing PDEs. It was originally proposed in 1970 [19], [20] for

interpolation of scattered data and was shown [27], [28], [31] to have an exponential convergence for function
approximation. The MQ method was introduced for solving PDEs in Kansa [24], [25] in early nineties. Since
then it was successfully applied for solving a number of 2D and 3D PDEs, see e.g. [4], [18], [29], [17], [21], [7]

and references there, while some convergence results for solving PDEs, based directly on the interpolation

error estimates, appeared only recently [14, 15]. Application of the MQ method to PDEs leads to finite
dimensional problems with full matrices. The Kansa-MQ method was shown to give high accuracy with a

relatively small number of unknowns (tens or hundreds for 2D problems). The corresponding linear systems

can be efficiently solved by direct methods. In [11] we have extended the Kansa-MQ method to numerical
solution of parametrized nonlinear elliptic PDEs. We presented there results of our numerical experiments

"E-maih alex,_uaht itan.uah.edu
tE-maih friedmanQ math.uah.cdu
_E-maih kansal (@llnl.gov



withcontinuationof solutionsto anddetectionof bifurcationsin 1Dand2DnonlinearellipticPDEs.We
foundthatthemodestsizenonlinearsystemsresultingfromtheMQdiscretizationcanbeefficientlycontinued
byastandardcontinuationsoftware,suchasAUTO[5].

Ourobservationshaveshownthat theresidualerroris typicallylargestneartheboundary(byoneto
twoorders)comparedto theresidualerrorin thedomainfarfromtheboundary.

In this paperweformulatean improvedKansa-MQmethodwith PDE collocation on the boundary

(PDECB): we add an additional set of nodes (which can lie inside or outside of the domain) adjacent

to the boundary and, correspondingly, add an additional set of collocation equations obtained via collocation
of the PDE on the boundary. The motivation for this modification of the Kansa-MQ method comes from

our observations that I) the residual is typically the largest near the boundary (by one to two orders larger

than in the domain far away from the boundary), and 2) the residual is dramatically reduced when we use

the PDE collocation on the boundary. The .MQ PDECB method leads not only to a higher accuracy, but,

for nonlinear problems, also to a higher ejficiency due to °ciie reduction of the number of unknowns in the

continuation process by using a preprocessing.
We apply our MQ PDECB method to several model 1D and 2D linear and nonlinear elliptic PDEs

and present results of our numerical experiments. These results demonstrate considerable improvement in
convergence of the MQ PDECB method over the Kansa-MQ method, with both methods having exponen-

tial convergence with essentially the same rates. To our knowledge, this is the first demonstration of the

exponential convergence for the MQ method applied to PDEs.

A related idea was successfully used for high Re number fluid flows in the cases of the RNS model [8],

[12] and Alexeev hydrodynamics equations [10] (in the framework of the finite element method), that was
applied for the solution of 3D thermo-vibrational flows [9].

A class of global numerical methods for 1D and 2D problems, the numerical algorithms without saturation,

was proposed by Babenko in early eighties [1]. These include a highly accurate discretization method for
PDEs based on Chebyshev polynomials. This method was further developed by Belykh (see e.g. [2],[3]),

who found it to be more accurate and better conditioned than the spectral method.

In Section 2 we formulate the Kansa-MQ and the MQ PDECB methods for a linear elliptic PDE. In
Section 3 we describe in detail the Kansa-MQ and the MQ PDECB methods for continuation of solutions

to parametrized nonlinear elliptic PDEs. For clarity of presentation, Section 3 is written independently of

Section 2. In Section 4 numerical examples are given that illustrate the accuracy of our method. In Section
5 we summarize our results.

2 A linear elliptic PDE.

We consider a well-posed elliptic boundary value problem: for given g(x), f(x) find u(x) from

Lu(z)=f(x), inftCIR a , (1)
B_(x)lon = g(z),

where .Q is a bounded domain. L is a linear elliptic partial differential operator, and t? is a boundary operator.

2.1 The Kansa-MQ method.

Introduce a set Oh of nodes (Fig. 1)

{ N r "_N-I-N, }Oh = {z,},=l c O, tx_h=N+ _ c Ofl (2)

and the MQ basis functions,

igj(z) =- gj(cj,x) = llx - x jIl_ + cj, j = 1,...,N+ Nb, gN+Nb+I(X) = 1, (3)

where llx - x411_ is the Euclidean norm in IRa cA >_ 0 are called shape parameters [25]. \¥e look for the
approximate solution uh to (1) in the form

N+Nb-F1

(4)
j=l
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Figure I: Nodes for the Kansa-MQ and MQ-PDECB methods: (a) ID Ka.nsa-MQ nodes (top) and PDECB

(bottom), node numbering is shown; (b) 2D Kansa-MQ nodes (left) and PDECB (right): o - nodes for PDE
collocation. • - BC collocation, 9 - PDE and BC collocation, + - nodes added for PDECB, hi is a distance

to the boundary (may be negative, if nodes are inside); h is a mean distance between nodes.

Substituting _'h (x) into (1) and using collocation at the nodes Oh, we obtain the finite dimensional problem

L ajgj(zi) = ajLgj(xi) = f(xi), i = 1,...,N,

B ajgj(xi) ajBgj(xi) = g(xi), i = N + 1, ...,N + N_, (5)
j=l

Z a: = 0.

j=l

Introducing the notation: a = (at ..... ax+x_+l) T, b = (/(:q), ..., ](XN), g(xN+l), ..., g(ZX+X_), o)T E R :v+N_-t

B 2 --'_

BOl (x._,+ 1

Bgl (x:,'*x_)
1

I Lgt(xt) ... LgN+Nb+I(Xt) ]
ng = " " " ,

Lgl (a::N) ,.. LgN+Nb+I(XN)
... Bgx+:%(XN+I) BgN+I%+I(XN+t)

• .. Bg:V+Nb(XN+Nb) BgN+N_,+I(XN+N_,)

... ] 0

(6)

we can rewrite the system (5) in the matrix form as

Wa=b,

whose solution is

a = W-lb.

(r)

(s)

2.2 The MQ PDECB method.

Introduce a set Oh of nodes (see Fig. 1)

= {z,}i= t c R, la:it,=x+l C O_, 1N +2Nb _d_xih=,,v+Nb+l C \ OFt j , (9)



where the nodes "{Xiti=N+Ns+t , which can be inside f_ or outside f_, are adjacent to the boundary Oft and
the MQ basis functions,

a(x) _ a(c,,x! = V/llx- x, ll_ + _, J = 1,...,N + Yb, _N+2_,+_(x)= 1.

We look for the approximate solution uh to (I) in the form

(10)

N+2Nb+I

_,,(_)= _ ajgj(_), (11)
j=l

Substituting uh(x) into (1) and using collocation at the nodes ®_, we obtain the finite dimensional problem

L ajgj(xi) = ajLgj(z,) = f(z,), i = 1, ..., N + Nb,

\ j=l =

(N 4-_-t- 1 ) N+2N_,+ 1
B ajgj(z,)

\ j=l

N+2Nh

E aj=O.
j=l

= _ ajBgj(xd=g(zd, i=N+l .... ,X+.\'_, (12)
j=l

Introducing the notation: a = (al, ..., aN+2.%+t) T, b = (f(xl) .... , f(XN+Nb), g(xN+Nb+,),--., g(xN+2ib), 0) T e
__,\'+2.\'h tl ,

B 2 _-_

[ Lgl(xl) ... LgN+2,%+l(Xl) ]
Lg _ " ° "

Lgl(x?_'+xs) ... LgN+2Ns+l(XN+Ns)

t3gl(XN+t) ... Bg,'¢+2.x's(x.^,'+l) BgNT2N,+I(XN-t-1)

1 ... 1 0

, I'I' = Bg '

(13)

we can rewrite the system (12) in the matrix form as

Wa = b. (14)

3 Continuation for nonlinear elliptic PDEs.

Consider a boundary value problem for a second order system of n parametrized nonlinear elliptic PDEs:

F (u(x), ,\) = D((_).Xu - f(Vu, u, x, A) = 0, in _'_C ]]_d I e _ l/,(') E Rn
Bu(z)lo_ = 0. ' ' ' (15)

where Q is a bounded domain. D(A) is a positive diagonal n x n matrix, f is smooth, and B is a boundary
operator which we assume, for simplicity, to be linear. For the bifurcation analysis in the process of con-

tinuation we also need to consider the eigenvalue problem for the linearization DtF(u, A) of F about the
solution u of (15)

DIF(u,,X)v(x) = #v(x), in fl, (16)
Bv(z)lon = O.



3.1 The Kansa-MQ method.

To formulate the approximate problem, we first introduce the set Gh of nodes

{ N r _m+Nb }Oh = {x,},= l C fi, lx_h=N+L C 0fl

and the MQ basis functions,

gj(x) = gj(cj,x) = _lJx - zjll_a + c_, j = l,...,g + Nb, gg+N,+t(x) =1,

We next define an MQ finite dimensional subspace

Sh:= X = Z ajgj(-): aj='0, /}_(xi)=0, i=N+I,...,N+Nb .
---- j=l

The problems (15) and (16), respectively, are approximated by the collocation equations

Y (Uh(Zi),,_) =O, Uh E Sh, i = I,...,N,

(17)

(is)

(19)

(20)

Substituting

Lva(x,) = D,F(uh, )_)vh(x,) = #vh(xi), vh E Sh, i = 1, ...,N. (21)

N+Ns+I

uh(x) = Z ajgj(x), (22)

N+Nb+I

va(x) = Z bjgj(x), (231
j=l

into (20) and (21), respectively, and using the definition (19) of Sh, we obtain the following finite dimensional

problems:

(G(a, .k) ) i =F ajgj(x,), A

B ajgj(z,)

\ .1=[

NTNh

E = 0,aj

-----0, i = 1, ..., N,

=0, i = N + I, ..., N + Nb, (24)

L bjgj(x,) = I_ bjgj(xi), i = 1, ..., N,

\ J=_ =

B bjg¢(z,) =0, i=N+I,...,N+Nb,

k 3=L
N + Nb

Z bj=O.

j=l

(25)



Introducing the notation: a - (al, ...,aN+Ns-rl) T, b-_ (bL ..... bN+Nb+I) T E _n×(N-bNb+l),

BgL(XN+I) ... BgN+Nb(XN+I) BgN+Ns+I(XN+I)

Bgl(x..'_r+N_) ... BgN+Nb(XN+Nb) BgN+Nb+I(XN+N6)
1 ... 1 0

Lgl(xl) ... Lg_\'+N_-,-I(Zl) [9x(Zl) .-. gN+gb+l(Zl)

L_= " ' ' , F= [ " " "Lgl(xN) ... LgN+:,'_,-I(XN) gI(XN) ... gg+Nb+l(XN)

we can rewrite the problems (24) and (25) in the matrix form as

= d,
Bga = O,

(26)

(27)

Lgb = #Fb,

Bgb = O.

Implementation 1. Let

a 1 = (al,...,atv) r E N,x.V, a" = (aN+l,...,aN+Nb+t) r E _nx(Ns-l-l);

(2S!

F1 -

gl(Xl) ... gN(Xt ] [ g.\'+I(Xl) ... gN+Nb+l(Xt)
• . . _ 1"_2 ___ • . .

gI(XN) ..- gN(Z.'V' gN+I(XN) ... gN+Ns+I(XN)

1

B 9 =

Ng'_(XN+I) ... B qN(XN+I)

Bg:,:ZN+,_,_) ... B.q._(ZN+N_)
1 ... 1

BdON+I (XN+I)

Bgx+l (XN+N_)
1

Substituting this into (27), we rewrite it ,_

where a 2 solves

... BgN+N_(XN+I)

.. BgN+:_'b(XX+,%)

6':i(_1,)0 - G(al, a2, )0 = O,

"_ "_ -- J_ g ,:2 .B_a'= i 1

BgN+Ns+I (XN+I)

BgN+N_+I (X_'+tVb)
0

(29)

(3O)



Similarly, we rewrite (28) as

or, eliminating b2, as

L'b I + L_b _ = # (F'b I + F262),
--_-R_h'+ B_b2 = 0.

L_b'- Li(,_)-1,_b_--, (r'bt÷r2(,_)-t ,_b.). (311

We are interested in continuation of solutions to (29). Therefore, in addition to a t, we also treat A as

unknown, and add an algebraic constraint

Gc(a t , )_.)= 0,' (32)

which defines a parametrization of the solution curve.

Algorithm 1 (Continuation algorithm for the system (29), (32)). Given current approximations to
a t E Rn×N and h E _ a complete Newton iteration consists of the following steps:

(0) Compute the matrices B_, B_, F t, F"-.

(1) Solve the system (30) to find a 2.

(2) Use the expressions (29), (32) to compute the residuals -_(a 1, A), -G_(a t, X) and then compute the
matrices Dt6, D2G, Dt Gc, and D2G¢ by differencing.

(3) Solve the system

Dt__Sa t + 5)_D2_ = -G(a', A),
D1G:Sa I + 5)_DeG_ = -G_(a t , A), (33)

where we omitted iteration indices for 5a t and gX in (33).

(4) Updatea t _a t +Sa 1 and A _ A+SA.

(5) Solve the generalized eigenvalue problem

_t_ _=, (r' +r_(,_)-' z_)b' (3_!

(to detect bifurcations). Note that D_b t = L_b t - n_ (B_) -t B_Lbt, see (31).

Implementation 2. Let U = (U1,...,Ux r be the vector of nodal values of the solution uh (22) of the

collocation problem (20), and let {¢i}N=l, be the Lagraage basis in Sh :

{¢j e Sh : Oj(x,) =Sij, i,j = 1,...,N}. (35)

Then uh can be written as

N

j=l

Combining this with the definitions (22) of :L_ and (26) of t79 and F, we have

(36)

which defines the 1 - 1 correspondence between U 6 RnxN and a 6 R nx(N+Nb+l).

ra =U, (37)
Bga = 0,



Theproblems(20)and(21),respectively,axewrittenas

_(U,)_) - G(a, )_) -- O,

where a solves (37), and

(38)

D_G(U. )_)V = #V, V e _,xN. (39)

As before, to define a paxametrization of the solution curve, we add an algebraic constraint

at(u, _) = 0. (40)

Algorithm 2 (Continuation algorithm for the system (38), (40)). Given current approximations to
U E II_n×N and h E _ a complete Newton iteration consists "of the following steps:

(0) Compute the matrices Bg, F.

(1) Solve the system (37) to find a.

(2) Use the expressions (38), (40) to compute the residuals -G(U,A), -Gc(U,A) and then compute the
matrices Dig - Dlg(U,;_), D2g - D_7,(U,)_) Dlg_ =- D,gc(U,)O, and D2g - D2g_(U,)_) by differ-

encing.

DI_SU + 5AD2G = -_(U, A),
D_G_fU + 5XD_G_ = -G_(U, X),

(3) Solve the system

where we omitted iteration indices in (41) for 5U and 5A.

(4) Update U --+ U + 5U and A -+ _ + _)_.

(41)

(5) Solve the eigenvalue problem (39) (to detect bifurcations).

Remark 1 For our numerical experiments, we implemented in AUTO [5] Algorithm 2 for the Kansa-MQ

method and Algorithm 2a, below, for the MQ PDECB method. The principle reason for choosing Algorithm

2 rather than Algorithm 1 is that the eigent'alue problem (39) (and (56)) is a standard eigenvalue problem
whose solution is supported by AUTO. On the other hand, the eigenvalue problem (3d) is a complicated

generalized eigenvalue problem whose solution is not supported by AUTO.

3.2 The MQ PDECB method.

To formulate the approximate problem, we first introduce the set 0h of nodes

f "fx "_N _ _.'V+Ns t -_N+2Ns _d 1O_, = I.t iJ,=l C f), ix, N=N+I C vq_, lXili=N+Xs+l C \ 0f_ , (42)

r _ N+2_\"b

where the nodes JXiL=N+N6+l _ which can be inside _ or outside _, axe adjacent to the boundary Of'/, and
the NIQ basis functions,

gj(x) =- gj(ci,x) = _/[[x-x:_t_,+c_, j= 1 .... ,N + Nb, gN+2N,+,(x) = 1. (43)

We next define an MQ finite dimensional set (which is not a subspace, in general)

a =O, .
,/----1 j_-I

(44)
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Tile problems (15) _md (16), respectively, are approximated by the collocation equations

F (uh(xi),)Q = O, uh E S_, i = 1., ..., N, (45)

Substituting

Lv,_(x{) =_1)_F(uh, A)vh(z_) = ttvh(x,), vh _ S_, i = 1,...,N. (46)

N+2.Nb+I

uh(x) = E aigj(x)' (47)

j=l

N+2Nb+I

vh(_) = _.. bj_j(x), (4s)
j=l

into (45) and (46), respectively, and using the definition (44) of S_, we obtain the following finite dimensional

problems:

(V'N+2N_+_ /(G(a,X)) i =- F z....,j=t _ljgj(xi),X =0, i = 1,...,N,

(G(a, A)) i =-- F I_"_.jN=+2N_+t (zjgj(xi), ,_) = 0, i = Y + 1, ..., N + Nb,
(49)

N +2 N_

2..j=t a i = U,

L bjgj(x, -- _ bjgj(xi), i = I, ..., N + ,\"b,

\ J=_ .=

B bjgj(xi) =0 i=N+I,...,N+Nb,

\ :=_

N+2N_

b;=0.

j=l

Introducing the notation: a = (_zi, ..., aN+2,\'_+l) 1, b = (bl, .-., bx+2Nb+l) 1 6 _ nx[;v+2"%:'b+l) ,

B.ql (X \'+ l) BgN÷2Nb (X.\'+I) BQN+2Nb+I(Xlv+I)

B 2 -----

Bgl (XX+N_) BgN+2Nb(X.\'+.V_) BgN+2Nb+I(XN+N_,)

1 1 0

L_= ' " " , F= " "

Lgl(x.\'+Nb) ... LgN+2_+l(x.','+._cb) gI(XN+N6) .-.

we eai_ rewrite the problems (149) and (50) in the matrix form as

(c(_,.\)), =o, i= I,...,N,
(G(a,)Q)_ = 0, i=N+I,...,N+Nb,
Bga = 0,

aN+2.\,,+l(x_) 1

(50)

(51)

(52)

(53)



Implementation 2a.

solution uh. Then by the definitions (47) of uh and (51) of Bg and F, we have

(G(a,A))i = O, i=N+I,...,N+Nb,

Fa=U,

Bga = O,

which defines the 1 - 1 correspondence between U E _n×N and a E _nx(N+2lVb+l).

The problems (45) and (46), respectively, _e written as

where a solves (54), and

Let U = (Uh(Zt),...,Uh(XN)) T be the vector of nodal _alues of the approximate

(54)

(G(U, A)) i - (G(a, A)) i = 0, i = 1, ...,N, (55)

D16(U, ),)V = p.V, V e _,_×N. (56)

As before, to define a parametrization of the solution curve, we add an algebraic constraint

Go(u, = o. (57)

Algorithm 2a (Continuation algorithm for the system (55), (57)). Given current approximations to
U E Rn × N and .\ E .R, a complete Newton iteration consists of the following steps:

(0) Compute the matrices/3g, F.

(1) Solve the system (54) to find a.

(2) Use the expressions (55), (57) to compute the residuals -G(U,A), -Gc(U,A) ,and then compute the

matrices DiG =- DtG(U,,\), D2G =- D_G,(U,A) D1Gc - DI_c(U,A), and D2G =- D2_]c(U,A) by differ-
encing.

(5S)

(3) Solve the system

D_G,fU + 5AD2G = -G(U, A),

D1GjU + 5AD2Gc = -Gc(U, A),

where we omitted iteration indices in (58) for 5U and hA.

(4) Update U -+ U + 5U and A _ A + dA.

(5) Solve the eigenvalue problem (56) (to detect bifurcations).

4 Numerical experiments for 1D and 2D elliptic PDEs.

We present examples of solution of linear 1D and 2D elliptic PDEs and continuation of solutions to nonlinear

1D and 2D Gelfand-Bratu equation. Each problem is discretized by the Kansa-MQ method, see Eq. (38),
and the MQ PDECB method, see Eq. (55)•

In the case of nonlinear problems, we perform continuation of solutions by Algorithm 2 for the Kansa-MQ

method and by Algorithm 2a for the MQ PDECB method. We compare the accuracy of the detection of
the limit point (or fold) by the two methods. We recall that a solution (u0, Ao) of equation f(u, A) = 0

is a (simple) limit point if the solution curve in (u(s), A(s)), for some parametrization s, makes a turn at
(uo, An). This is expressed formally as dimY (fu(uo, Ao)) = 1 and f),(uo, ha) _ 7_ (.f_,(u0, Ao)).

We will use throughout the notation h for the average distance between the nodes. Then h = I/(K - I)

for a 1D problem on (0, 1) and for a 2D problem on (0, 1) x (0, 1), where K is the number of nodes along
each axis.

To improve the accuracy, we employ 2 simple adaptation strategies for the shape parameters C =
{ci ..... cx+x_} for the Kansa-MQ method, see Eq. (18), and C t = {cl,...,eN+2_,_} for the MQ PDECB

method, see Eq. (43); for the nodes ®h for the Kansa-MQ method, see Eq. (17), and O_ for the MQ PDECB
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method,seeEq. (42).Tobespecific,assumethat _ = (0, 1) x (0, 1) and consider the case of the Kansa-MQ

method. Let r(x,y, C, Oh) be the residual. Our strategies are all based on the Nonlinear Least Squares

Method which minimizes the L2 norm qv(C, Oh) -- ][rl12 of the residual. By the quasi-uniform distribution
of nodes we will mean the distribution of nodes, where the nodes adjacent to the boundary 0fl are placed
at the distance [1 = 6h0, 0 < (f _< 1, from 0Q. while the remaining nodes are distributed uniformly with the

distance ho between them.

Strategy 1. Uniform distribution of nodes Oh;

Strategy 2. Quasiuniform distribution of nodes Oh;

In all examples below we use the adaptation strategy 2..

Example 2 .4 1D model linear problem

u_= + (27r)="sin(27rx) = 0,

u(0) = _(1) = o.

The analytical solution is

C1 .... = CN+Nb -- G min_(C,"_ "LT)h),

cl .... = CN+N, = C; min _;(C, Oh).
c,

u_=_ce = sin(2_x).

in _ = (o, 1),

Numerical results are presented in Fig. 2a.
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Figure 2: Convergence properties of the Kansa-MQ method and the MQ PDECB method:

(a) 1D linear problem, Eq. (59); the Loo norm of the solution error is plotted, in the logarithmic scale, versus

i/h, where h is the average distance between the nodes. The roundoff error starts to dominate at 1/h _ I1
for Kansa-._IQ method and at 1/h _ 18 for the MQ PDECB method.

(b) The location _\ of the limit point for 1D Bratu-Gelfand problem, Eq. (61). Relative error in X is plotted

in the logarithmic scale versus 1/h.

Example 3 .4 2D model linear problem

Au -- (2x2y 2 + 2x2y + 2x_] 2 -- 6xy)e (z+y)) = 0
u Ion= O.

in _ = (0,1) x (0, i),
(60)
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Figure 3: Convergence properties of the Kansa-MQ and the MQ PDECB methods:
(a) 2D linear PDE, Eq. (60); the Lo_ norm of the solution error is plotted, in the logarithmic scale, versus

1/h, where h is the average distance between the nodes. The roundoff error starts to dominate at 1/h _ 9

for the Kansa-MQ method and at 1/h ,,, 11 for the MQ PDECB method. We also provide, for comparison,
the error in the MQ interpolation of the exact solution Ue=act.

(b) The location ,\ of the limit point for 2D Bratu-Gelfand problem, Eq. 62). Relative error in A is plotted.

in the logarithmic scale, versus l/h.

The analytical solution is

Ue_a:= = x(x - 1)y(y - 1)e (x+_).

Numerical results are presented in Fig. 3a. We do not have an explanation of why the MQ PDECB solution
is more accurate than the interpolation.

Example 4 1D Gelfand-Bratu problem. This is a scalar problem

u" - )_eu = O, in _ = (0, 1), (61)
u(0) = u(1) = o.

that appears in combustion theory and is used as the demo example e=p in AUTO97 [5] (fifth order adaptive
orthogonal spline collocation method). There is a limit (fold) point on the solution curve. We take the value

of ,\ at the limit point found from demo el? (K > 50) as exact. The relative error in location of the limit

point is shown in Fig. 2b. See also [11] for additional numerical results and references.

Example 5 2D Gelfand-Bratu problem

Au + _\e"_= O, in f_ = (0, 1) x (o, 1), (62)
u Io_.= O.

This problem was studied by a number of authors. In [6] the problem was discretized with a high order

orthogonal spline collocation method with sparse Jacobian. There is a limit (fold) point on the solution
curve. The exact location of the limit point is assumed to be at the value of X obtained in [6] on a 16 × 16

mesh with 4 × 4 collocation points. The re;.ative error in location of the limit point is shown in Fig. 3b. :Vote

that the curve for the Kansa-MQ method was obtained [11] using quadruple precision which considerably
slowed down computations, while we use ,_nIy double precision with the MQ PDECB method here. See also

[11] for additional numerical results, refe_nces and a discussion of the operation count•
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Figure 4: (a) 1D linear problem with a boundary layer, Eq. (63) with e = 10 -3. The MQ PDECB solution

with 21 nodes and the analytical solution uex,ct are plotted versus x in (0, 0.1).

(b) The residuals for the solutions of 1D Gelfand-Bratu problem (61) by the Kansa-MQ and the MQ PDECB
methods are plotted versus x with 1/h = 9, )_ = 2.5. The L_ residual norms are 4.2 x 10 -3 and 3.3 x 10 -6,

respectively.

Example 6 A 1D model linear singular perturbation problem studied in[23]:

eu== + u= =0, in _=(0,1),

u(o)=o, u(1) =1.

The analytical solution is

(63)

It was demonstrated by I-Ion that this problem can not be solved by a standard Kansa-MQ approach for c << I,

and the adaptive technique proposed can be an efficient way to treat such problems [23].

Here we use the MQ PDECB to solve this problem for _ << 1 with relatively small number of nodes. For
= 10 -3, the MQ PDECB solution with 21 nodes and the exact solution are plotted versus x in Fig. 4a.

The L_ norm of the solution error is 0.001 for the MQ PDECB method, while it is 0.22 for the Kansa-MQ

method with 101 nodes (not shown). Note that for e = 10 -4 one can attain the same error 0.001 in the MQ

PDECB solution with 41 nodes (not shown).

Example 7 Fig. 4b shows the residual distribution for the solutions of 1D Gelfand-Bratu problem (61) by

the Kansa-MQ and the MQ PDECB methods with 1/h = 9, A = 2.5. The Loo residual norms are 4.2 x 10 -3
and 3.3 × 10 -6, and the L2 residual norms are 7.8 × 10-4 and 1.1 x 10 -_ for the Kansa-MQ and the MQ

PDECB methods, respectively.

5 Conclusions.

We have formulated an improved Kansa-MQ method with the PDE collocation on the boundary (MQ

PDECB). The idea of the method is to add an additional set of nodes adjacent to the boundary arid, corre-

spondingly, an additional set of collocation equations obtained via collocation of the PDE on the boundary.
We have applied the MQ PDECB method to several model 1D and 2D linear and nonlinear elliptic PDEs and

have presented results of our numerical experiments. Numerical results demonstrate considerable improve-

ment in convergence of the MQ PDECB method over the Kansa,-MQ method, with both methods having
exponential convergence with essentially the same rates.
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Abstract

We present an alternative method for treating numeri-

cally a problem of viscous flow with a boundary layer

that is based upon regularization of the Navier-Stokes
equations. Shishkin (1997) showed that grid methods

perform poorly in dealing with the boundary layer. Tra-

ditional grid methods give poor agreement with the ex-
perimental data for high Re number flows. Shishkin

showed that the remedy for these difficulties is the con-

struction of special meshes in boundary layer. We

present an alternative approach that is more efficient

and less mesh dependent. Our approach is based upon
the regularization of the Navier-Stokes equations, and

we discuss the mathematical and physical aspects of

this approach. Numerical results that we obtained by
our regularization process in 2D and 3D are compared

with the experimental measurements. We compared our
model against : (1) The 3D driven cavity flow by Kos-

eff and Street f1982) at Re = 3200 and 10,000: (2) a

2D backward facing step flow by Kim et al. (1980)
at Re = 44.000; and (3) a 3D thermal convection in a

cylinder by Bogatirev et al. (1996) at Ra = 1000 to

100.000. This proposed regularization model is not a
turbulence model, and no additional equations are in-

troduced. Recipes for the choice of the regularization
parameter are presented.

Keywords: Navier- Stokes equations, Boundary Layer,
Regularization. Finite element method

1 Introduction

Driven cavity problem is widely used as a benchmark

for comparison of numerical codes. The agreement be-
tween different codes is within 1% or better. Published

2D Navier-Stokes (NS) solutions can qualitatively de-

scribe the flow structure, the number and location of

vortexes and their size, but show poor agreement with

the experimentally measured velocity profiles by Kos-
eff and Street (1984) for Re -- 3200 and 104 (see [1]

and references therein).

Results obtained by Ghia et al. [2] on a fine mesh

(256x256) for Reynolds number up to Re = 104 are only

the stationary solutions. While the actual fluid flow is

essentially transient and 3D, the measured mean veloc-
ities in the plane of symmetry (3' = 1.5) appear to be

2D. A disagreement of 2D numerical solution with ex-

perimental data is by a factor of 2 to 3 (Fig. I, 2). A
3D NS solution still can not improve this discrepancy,

and known 3D results differ significantly (see 1992

GAMM-workshop [3]). One may justify that the flow

turbulence is a reason for a disagreement. We tested

this and solved the problem using a standard k - E turbu-
lence model that is available in most commercial CFD

codes. Our results obtained with the CFD2000 code [4]

are presented in Fig. 1, 2 as well. One can see that the
agreement of the k - a model results with experiments

is still very poor.
We observed a similar discrepancy with the exper-

iment in the numerical modeling of weakly turbulent

thermal convection in a vertical slot (H/L = 11.2)
heated from a side, the Rayleigh number was RaL =
3.75.108, and Pr = 15. A direct numerical solution (us-

ing Boussinesq approximation) allowed us to describe
basic features of the flow evolution and large vortex dy-

namics [5l,[6l.

Mean vertical temperature profile obtained agrees

well with the experimental data [7], but mean velocity
profiles differ significantly from those data. Local mag-

nitudes of computed velocity were about twice higher
than ones in the experiments [7]. The Reynolds number
based on the computed velocity was of the order 104. A

use of more detailed time and space discretization did
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Recently a poor ability of grid methods to deal

with boundary layer has been proved theoretically by
Shishkin [8]. Tile estimation for the solution error is

given as O(t) for uniform meshes, if thin boundary

layer is present. Shishkin pointed out that the rem-
edy for these difficulties is the construction of a special

meshes in the boundary layer (no'.,,' called as Shishkin
meshes). To construct a mesh. one needs to use the

boundary layer thickness, that is not known in advance.

Shishkin's theory received confirmation for a driven

cavit,.' ltow problem in [9]. It was shown that the

computational results are extremely mesh sensitive for
Re = 3200 and higher. Still. with some special fine

mesh resolution near the walls, proposed in this paper.
it ,,,.'as possible to obtain a solution that agrees well with

the experimental data [I].

In this paper, we present an alternative approach that
is efficient and less mesh dependent. It is based on the

regutarization of tile Navier-Stokes equations. Mathe-

matical and physical aspects of this approach are dis-
cussed. Presented model is a major simplification of the

higher order continuum model for incompressible vis-
cous flow proposed in [ 10].

Tile governing equations are presented, a model is de-
scribed and applied to a several viscous fluid flow and

thermal convection problems. Comparison with the ex-
perimental data and results obtained by different meth-
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ods are discussed as well.

2 Governing equations

We consider a flow of incompressible viscous tluid

in a closed domain. The governing equations are the

following. The momentum equation is

8V iVzV
+(VV)V-Re- +7p -- F----O

while continuity equation is

(1)

v.v=0 (2)

where Re = VoL/v - the Reynolds number, Vo - velocity
scale, L - hydrodynamic length scale, v - kinematic vis-

cosity, F is a body three. For a case of thermal convec-

tion the body force is F = GrRe- t. @. e_ (Boussinesq
approximation), where @ is a nondimensional tempera-

ture, Gr is the Grashoff number and ex is a unit vector
in the direction of gravity. In the case of thermal con-

vection the energy equation complete the formulation:

30 ]
-_- + (V_')0 = Pr- Re-1_720 (3)

where 0 is a nondimensional temperature scaled by
0 = (T - Tcota)/bT, AT = Th,,t - T,,,,td . The Prandtl,

Grashoff and Rayleigh numbers are respectively Pr =



v/k, Gr = Ra/Pr, and Ra = fSATgL3k-lv -t, where 13,

g, k are respectively the coefficient of thermal expan-

sion, gravitational acceleration, and the thermodiffusiv-

ity.
Boundary and initial conditions accomplish the prob-

lem formulation and will be given tbr each of problem
considered below.

The value of x (or l) is not known in advance, and we

provide recipes on a choice of these values at the dis-
cussion of the results.

Such a regularization has an additional useful feature
for the FEM. It allows to use the same order finite ele-

ment approximation for the velocity and pressure with

all the unknowns located at the same nodal points.

3 Regularized Navier Stokes

equations

The regularization proposed consist in the modification

of the continuity equation (2) that becomes as follows

V. V = z'V. (Vp - F) (4)

where x" is a small regularization parameter. Fer z"

0 we approach the original equation (2). A beundary
condition for the pressure on a wall is

(Vp - F). n = 0, (5)

where n is a unit wall normal vector. Equations (4)
and (5) present the main feature of this method, and en-

sure a balance of the normal component of the momen-

tum on the wall. We will show in the following sec-
tions that equations ( 1), (3), and (4) with (5), called here

as regularized Navier-Stokes equations (RNS), are more
suitable for use with the finite element method _FEM).

The solution of the RNS by FEM can result in a bet-

ter agreement with the experimental measurements for
high Reynolds number flows. The RNS model showed

also a good agreement with the analytical solutions for

a very slow flows with thin boundary layer in the case
of magnetic field suppression of the semiconduc:_r melt

flow in crystal growth [11].

For a justification of this regularization one can be
referenced to the new hydrodynamic equations pro-

posed in [ 12] that have the fluctuation terms of this kind.
Equation (5), according to the theory in [121, means the

absence of the hydrodynamic fluctuations on the wall.

Similar term. as in the right-hand side of eq. _4), has
been obtained as a result of the "consistent treatment

of time-advancement for the divergence-equation" by

Lfihner [13]. A discretization time step _ was used in
[13] instead of parameter "_"as in our RNS model.

A nondimensional regularization parameter z" is
expressed through dimensional scales as foilowing,
x" = xL-IVo, where "_is some time scale. Note. that

the dimension of a product rv is a square of len__th. We
introduce a regularization length scale l, l2 = ."v and

rewrite z" as "_"= 12L-2Re = K. Re, where K = 12/L 2.

4 Problems solved

We apply the RNS model for the solution of the follow-

ing problems:

1) Lid-driven cavity problem (2D and 3D). We
compare our results with experimental data obtained by

Koseff and Street[l] for Re = 3200 and 10 4. We solve

equations (1) and (4) numerically for the unknowns

(V,p) in the 2D region (x,z) = [0, 1][0, 1]. A 3D ver-

sion of the problem corresponds to Koseff & Street ex-

periment _1] with the domain (x,y,z) = I0, f][O,31[O, 1].
The boundary conditions are: V = (u,v,w) = (1,0,0)

at the driven lid (z = 1);V = 0 on the other walls, and

eq. (5) holds on all the walls. The undefined constant
in the pressure field is eliminated by setting p = 0 at

(x,y,:) = (o,o,o).
2) Backward facing step flow (213). We solve for a

flow in a plane channel with sudden (step) expansion

that corresponds to the experiment by Kim et al. [14].

The ratio of a step height H to the channel outlet width
L is H/L = 1/3. The Reynolds number for the exper-
imental flow is Re = 4.4. 10 4 with H as a length scale

[14], or Ret. = 1.32.105 in [15] when the channel outlet

width L is used as a length scale. The flow profile V(y)

is given at the inlet and p = 0 and stress free conditions

at the outlet. We have used the following domain geom-

etry: H = 1, L = 3, total length Lr = 12. and the length
from the inlet to the step L_ --- 4.

3) Thermal convection in a cylinder (3D). Ther-
mal convection flow in a differentially heated horizon-

tal cylinder is considered. The experimental data by

Bogatirev et al. [16] have been used for comparison.
These data have been obtained during the ground tests

for this device, a thermal convection sensor designed

for the space micro-acceleration measurements; it was
later flown in space on Mir station. Numerical results

from the 3D finite volume simulations by Bessonov [ 17]

have been also used for a comparison. The temperature
distribution on a cylinder wall was (i) linear tempera-

ture profile, and (ii) computed using a real, finite wall
conductivity (adjoint problem). The body force in (1) is
F = (O.O, RaPrO), and Re -t in (1) is to be replaced by

Prandtl number Pr = v/k. Experimental data are avail-

able for the Rayleigh number Ra in a range from 10 3 tO



105 that present the temperature difference between two

points inside a cylinder.

5 Finite element model and solu-

tion method

Proposed model allows efficient implementation by the

finite element method. Both velocity and pressure are

approximated by the same order finite element basis
functions. We used linear basis functions on triangle fi-
nite elements in 2D and trilinear on hexaedral elements
in 3D.

Note that when x" = 0, we obtain the NS equations,

and the FEM equations become incompatible. It is a
well known problem, and can be resolved if a different

order FE basis is used for the velocity and pressure ap-

proximation (see e.g. [18]). When z" is in the range of
10 -7 to 10 -4, our solution coincides with the NS one

up to Re = 10 4 in a case of driven cavity problem. The

value of x+ smaller than 10 -8 results in the wiggles in

the velocity profiles. At low Re, Re < 1000 the solu-

tion practically coincides with the NS one for any z"
between 10 -7 to 10 -2 .

A CFD code FEMINA/3D [18],[19] modified for a

new model was used in the numerical experiments.
Three scalar equations (or four in 3D case) from (1),

(4) are solved simultaneously. The nonlinear algebraic

system of equations, resulting from the FEM discretiza-
tion. is solved iteratively by a Newton method. Cor-

responding linear system is solved by robust precondi-

tioned iterative CGS-type method with preconditioning
by the high order incomplete decomposition. We used

a CNSPACK linear solver with a compact sparse matrix

storage (see on details of the solver in [20],[22]). A first
order decomposition was found to be quite enough lbr

the RNS. while the second or third order is required for
the NS related linear systems [20].

The solution is considered converged when an alge-

braic equations residual norm is I] r I1_< 10-'_ (typi-
cal initial residual value were 1 to 102). In the case

of the thermal convection problem, the energy equation

is solved separately at each time step or Ne_vton iter-
ation. Selected solution method and a corresponding

software implementation make it possible to solve large

time-dependent problems (up to 300,000 unknowns) on
the SGI 02 workstation.

6 Results and discussion

Initially for each problem we varied the value of "t or K
and compared numerical results with the experimental

ones and with the NS. At low Re < I000 the solution

practically coincides with the NS one for any z" be-
tween 10 -7 tO 10 -2 for problems 1 and 2. We solved

the transient problem equations (1), (4), or (1), (4) and
(3) and have been able to obtain stationary solutions. A

more efficient approach in such a case was a solution

of the stationary problem by the Newton technique. In
those cases there is a good agreement between the NS

and the experiment when it is available (for example,
Re':-- 50"to 500 in [21]).

Mass conservation in the continuity equation was
thoroughly analyzed. The local values of divV of the
numerical solution were examined. Note, that the nu-

merical solution satisfies the discretized equation ex-

actly only at specific points (nodes, integration points or
collocation points etc. depending on the method used),

and only approximately at an arbitrary point of the do-
main. As the mesh size decreases, the accuracy of the

approximation of the equation improves (typically as
h2, the square of the mesh size).

The value of divV for the numerical solution at an

arbitrary point is non-zero, and we found that it was of
the same order both for the RNS and NS numerical solu-

tions. The values of divV exhibited spatial oscillations
with amplitudes of 10 -3 tO 10 -2 . The averaged value

of divV (integral over the region near the vicinity of any

point) was the same order for RNS solutions as for the
NS ones. The integral over the whole domain ofdivV is
of the same order for both RNS and NS. Therefore, we

see that in the numerical solution, a regularization term

in the RNS continuity equation does not create more
numerical mass fluxes, than in the case of NS.

For a comparison we also present the results ob-
tained with a standard k- e turbulence model, using
the commercial code CF'D2000 [4]. A k-e turbu-

lence model was developed for computations of tur-

bulent flows, when the NS equations can not provide
reasonable results. Viscous term in the NS momentum

equation is replaced by a different stress term with a tur-

bulent Reynolds number Ret. Two more nonlinear equa-
tions are added to the system, that govern the turbulent

kinetic energy k, dissipation rate e and provide evalua-

tion of the Ref. These equations contain eight empirical
constants for a standard model ( 11 or more in improved
models). The standard k- e turbulence model is im-

plemented in many commercial CFD codes and widely
used in the solution of engineering problems.

6.1 Driven cavity problem

We used 81x81 nodes with a homogeneous triangular

mesh for 2D computations. Same mesh with quadratic
(6-noded) triangles and linear basis FE functions for
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Figure 4: Driven cavity problem, Re = 10.000. Com-

parison of horizontal velocity profiles (I-3) tbr nu-

merical (dashed lines) and experimental (squares) re-
sults and vertical velocity profiles (4-6) for numerical

(dashed lines) and experimental (triangles) results: I-
NS, 2 - k- e model, 3-RNS (2D); 4-RNS (2D), 5 - k -e

model, 6-NS

pressure and quadratic for velocity was used for the NS
computations. We note at once that further mesh refine-

ment did not influence the results lot both flow regimes
considered. For Re > 103 the RNS and NS solutions

become noticeably different for z" > 10-2. We varied

the value of K to match the experimental velocity pro-

files at Re = 3200 presented in [1]. Good agreement
was obtained, when K _ 1.5.10 -_.

Using the same value of K as above, we computed the
PaNS solution at Re = 104, for that [1] also provides the

data. The results are presented in Fig. 3. The error es-
timates for experimental points are 1 to 10%, according
to [1]. Therefore. we can conclude, that the RNS so-

lution is in better agreement with the experimental data
than the NS solution. Indeed. at this value of Re there is

significantly greater difference between the NS solution
and the experimental results. The k- E model results

also disagree with the experimental data.

Fig. 3 and 4 present the experimental measurements

and numerical results t%r, and w velocity components
obtained from the RNS (2D and 3D), 2D NS, and 2D
k - _ model. The experimental data are shown for the

symmetry plane (x.z) at y=l.5 along the lines x =0.5

and z =0.5 of the 3D cavity, that has relative (x:y:z)
dimensions 1:3:1. Since strong instantaneous velocity

fluctuations were observed, the experimental points cot-

respond to time averaged values of the measured veloc-
ities [ 1].

The results obtained with RNS model are in good

agreement with the experimental data for Re=3200 and
10,000 and are an improvement upon previous results

obtained using the Navier-Stokes equation.

An important feature of our numerical experiments is

the parameter K = 12/L 2. We can estimate 1, using the

value of K found and the experiment description from
[ 1]: L = 15cm, so I _ 0.58 mm. This value of I is a good

approximation of the "Kolmogorov microscale'" lexr
0.5ram (the smallest scale of the flow nonhomogene-

outy, viscous dissipation scale) that was observed in the

experiment ([1 ], p.398).

That is one of the ways to determine the actual value
of z" or K for the RNS model in advance, that is the

experimental approach. We remind the reader that for

low Re numbers the value of "_*is actually insignificant
and can be chosen in a rather wide range. It is the case

for the problem 3 (thermal convection).

For 3D flows we have solved the RNS for Re --- 3200

with the mesh of 41x41x33 nodes (221.892 unknowns),

refined near the walls, for a half of the cavity. The sym-
metry condition was used on a symmetry plane. Our

results of modeling are presented in Fig. 3 as well. One
can see that velocities obtained for both 2D and 3D pro-
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Comparison of the horizontal velocity profiles at x =
5.33 for the experimental [14], RNS and k- E: model
results.

files are close to the experimental data except in one re-
gion. For the Re = 104 we did not see any 3D numerical

results published for this case. The numerical solution
for our model does not exhibit strong oscillations as a

measured experimental velocities for both flow regimes
considered. In the case of Re = 3200 we are even able

to obtain a stationary, solution by the Newton technique.

6.2 Backward facing step flow

The numerical results for a 2D backward facing step
flow at Re = 4.4. 104 (referenced as Re = 1.32. 105

in [15]) were obtained and compared with experimen-
tal measurements [14]. We used a l10x60 mesh re-

fined near the walls and did computations starting at

low Reynolds number and increasing Re by small incre-

ments until 44.000. Fig. 5 presents the computed ve-
locity profile at x = 5.33 (x = 0 at the begin of the step),

the experimental mean velocity measurements [14] and
the k - E model results.

The RNS model results agree with experiment for

both the velocity profile and the recirculation zone
length Xr. Our result is Xr/H = 7.50 and the experi-

mentally obtained one is X_rXP/H _ 7 -4-0.5. The value
of z" used in the computations was in a range from 10 -2

to 10 -_. It did not influence noticeably the results. For

a smaller z" is was more difficult to reach the steady
state solution at Re = 44,000: we have to use more and

smaller increments in Re number to reach the final value

of Re. If the increment in Re number was large, the flow

pattern bifurcated to the unsteady flow with the vortexes

periodically originating from the recirculation zone and
/lowing downstrearn. Our conclusion is that the numer-

ical ILNS solution for this problem does not depend on

the value of x'.

The solution with a standard k - e model gives the

velocity profile at x = 5.33 that has no backward flow
at all [15]. A standard k-e model underpredicts the

reattachement point (recirculation zone length Xr) by a
substantial amount of 20-25% according to paper [ 15],

where different turbulence models have been analyzed

for this problem.

6.3 l_hermal convection in a differentially

heated horizontal cylinder

The RNS model is applied to the solution of the problem
of convective 3D flow in a differentially heated horizon-

tal cylinder. Initially a linear temperature profile was

assumed to be given on a cylinder wall. Experimental

data by Bogatirev et al. [16] and finite volume simu-
lations by Bessonov [17] are used for the comparison

at Rayleigh number in the range 103 to 1.2.105 (Fig.

6a). For the linear temperature distribution on a cylin-
der wall we obtained a good agreement with the numer-

ical results by Bessonov [17], obtained by the 3D finite

volume method for the NS equations. The agreement
with the experimental data was not good for Ra number

more than 2000 (solid line in Fig. 6b). The computa-

tions have been also done in [17] for a real, finite wall

conductivity. A thermodiffusivity data for a stainless
steel was used and adjoint problem was solved. The

agreement with the experimental data has been signifi-

cantly improved (dashed line in Fig. 6b).
The value of z" used was 10 -7 to 10 -3, and it did not

change noticeably the RNS results.

Another successful application of the RNS model to
a 3D thermal convection flows with vibrations applied

is presented in [23]. The application to the problem of

magnetic field suppression of the semiconductor melt

flow in crystal growth is considered in [I 1], where a
good agreement with the theoretical asymptotic solution
is obtained.

7 Conclusions

A numerical model for incompressible viscous flow is

proposed. It is based on the regularization of the Navier-
Stokes equations. Good agreement with the experiment
is obtained for a driven cavity flow at Re = 3200 and

104. The regularization parameter found to be related

to the experimentally observed spatial fluctuation scale.
The RNS model solution approaches the NS one for

small Re number. For high Re number the RNS solu-

tion is more close to the experimental data than the NS

solution (driven cavity flow, backward facing step flow),
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Good agreement with the experimental data for a 3D

thermal convection in a horizontal cylinder has been ob-

tained at Ra = 103 to 105.

The optimal value of the regularization parameter x"

still remains an open problem. We have found that the
0.14;0

., a_,_ numerical solution depends on the regularization length

I14t_

a,_aml for the driven cavity problem, and the optimal value

g_ of I is the same for both the 2D and 3D RNS solutions

TEMP and for all the flow regimes considered (Re = 3200 and

10;000); The value of/agrees with the "Kolmogorov

microscale" observed in the experiment [ 1].

The value of x* (or l) is not significant for a 3D

thermal convection in a horizontal cylinder and for a

backward facing step flow (Re = 44,000). The RNS

solutions agree with the experimental data and do not

change even if z" is changed by few orders of magni-

tude.
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Figure 6: (a) Thermal convection in 3D differentially

heated horizontal cylinder, temperature field in the cen-

tral X-Z plane. Ra = 105; (b) Comparison of tempera-

ture difference AT versus Ra number with experiment

[16] and finite-volume computations: squares - exper-

imental data. solid line - numerical results for perfect

wall conductivity with the NS [17], triangles - results

with RNS; dashed line - real wall conductivity (steel) is

used [ 17]; here AT is a measured temperature difference

between locations marked as "1" and "2" in (a).
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Abstract

A hierarchical family of methods for highly accurate solution for viscous flows at high Reynolds number, flows
with boundary layer is presented. Note, that thin boundary layer can occur even at low Re, e.g. in flows of electrically
conductive fluids under strong magnetic field at Hartman number Ha >2>1. Tbe main feature of the methods proposed
is the restoring of conservation laws at the boundary. Numerical solutions using this new approach compare favorably
with available exact or asymptotic ones and experimental data.

Introduction

Difficulties with the numerical solutions of Navier-Stokes (NS) equations for high Re number flows have been ref-

erenced usually to insufficient mesh resolution, complicated flow physics, turbulence etc. Shishkin et al. in series

of papers (1995-1997) shows theoretically that grid methods perform poorly in dealing with the boundary layer and

provides the estimation for numerical solution error as O(I) for uniform meshes [ 1]. It was proposed the construction
of special meshes as a remedy for these difficulties with more optimistic error estimation as O(hl/"), h is a mesh

size, with m = 9 or more. Failures of numerical solutions to obtain good agreement with experimental data during
last decades can be referenced as confirmation of Shishkin estimates (lid-driven cavity flow: experiments [2] versus

simulations [3]; thermal convection in a vertical slot: experiments [4] versus [5], etc.). Successful results with imple-
menting Shishkin-type strategy are obtained in [6]. To construct Shishkin mesh, one has to use the boundary layer

thickness that is not known in advance. Meshless methods have similar drawbacks in such problems (see e.g. [7]).
The facts above and recent experiments with different formulations [8] and regularizations [10] for the viscous

flow problem resulted in uncovering the main reason for poor numerical results: conservation laws are violated at the

boundary in numerical treatments. The violation is done explicitly in FEM by dropping the weak Ibrmulation at the
Dirichlet boundary (there is no choice); the same is not explicit but present in traditional FDM, spectral or multiquadric

(MQ) collocation methods (governing equations are not used at the boundary). That can be ignored for well-posed
problem, but becomes crucial for a singularly perturbed boundary value problem, e.g. viscous flow with boundary

layer.

We present the new alternative numerical solution methods that are more accurate, efficient and less mesh depen-
dent. These methods, ranging in the increasing of accuracy (and complexity of implementation), restore the conserva-

tion laws at the boundary: (i) a regularization approach, the RNS [10], (it) a projection approach, (iii) an extension of

basis function space (for FEM or MQ[ 15]).

Higher accuracy numerical solution methods for boundary layer

A regularization approach to solving the Navier-Stokes equations

We consider a flow of incompressible viscous fluid in a closed 2D or 3D domain f2. The Navier-Stokes momentum

and continuity equations are:

3V

_--i-+ (VV)V - Re-_V2V + Vp - F = 0 (1_



V.V= 0 (2)

whereRe = VoL/v is the Reynolds number, V0 is the velocity scale, L is the hydrodynamic length scale, v is the

kinematic viscosity, and F is a body force. In the case of thermal convection the body force is F = GrRe -I • O. e_

(Boussinesq approximation), where O is a nondimensional temperature, Gr is the Grashoff number and ee is the unit

vector in the direction of gravity. The energy equation is:

3O

3--t + (VV)0 = Pr-tRe-lV20 (3)

where 0 represents nondimensional temperature, scaled by 0.= (T. - T,,td)/AT with AT = Ta,, - T_.md. The Prandtl,
Grashoff and Rayleigh numbers are respectively Pr = v/k, Gr = Ra/Pr, and Ra --- _ATgL3k-lv -t, where [L g, k are

the coefficients of thermal expansion, gravitational acceleration, and of thermodiffusivity.

Boundary and initial conditions complete the problem formulation and they will be given for each problem.

A proposed regularization consists in modifying the continuity equation (2) to become

V. V = 7:*V-(Vp - F) (4)

where "t* is a small regularization parameter. For 7, __+0 eq. (4) approaches the continuity equation (2). The boundary

condition for the pressure on a wall is

(Vp - F). n = 0, (5)

where n is a unit vector normal to the wall. Equations (4) and (5) present the basis of this method. Equation (5) ensures
a balance of the components of the forces that are normal to the region boundary.

First results with a more complicated model have been presented in [8] and [9]. Further numerical experiments

have shown that accurate results can be obtained with the simpler model [10]. In [10] we have shown that equations

(1), (3), and (4) with (5), called as the regularized Navier-Stokes equations (RNS model), give a better agreement with
the experimental measurements for high Reynolds number flows than the traditional NS solution by FEM.

The pressure Laplacian term on the right-hand side of eq. (4), has also been obtained by Lfhner as a result of

consistent treatment of the time-advancement for the continuity eq. (2) [11]. There a discretization time step At is

used in place of our parameter x* and the boundary condition for the pressure was not specified.
The regularization parameter "_*is expressed dimensionally as "t* = xL -t Vo, where "ris time. The dimension of _'

is length squared. We introduce the regularization length scale I with 12 = 't'v and rewrite "r*as x* = 12L-2Re = K. Re.

where K = 12/L 2. The optimal value of x (or I) is not known in advance, We found that for problem with smooth
boundary condition the solution is undependable of the value of'_', with x* is the range from 10-8 to 10 -4.

Such a regularization has an additional useful feature for the FEM. It allows to use the same order finite element

approximation for the velocity and pressure.
Numerical results that we obtained for 2D/3D flow problems are in dramatically better agreement with analytical

solutions and experimental flow measurements. The numerical 2D/3D solutions by FEM with this strategy employed.
called RNS. against the 3D driven cavity flow data [2] and results by other methods are shown in Fig. 1. The residuals

of numerical solutions, shown in Fig. 2(a), demonstrate by one to two order residual reduction in the boundary layer

for the Navier-Stokes momentum equation. We recognized that eq. (4) is an approximation of the eq. (1) in projection
to the wall normal.

Further development of the method can be the use of the governing equations at the boundary. This task is

complicated in the frame of the low-order FEM scheme; a projection approach can be implemented with Hermite
finite elements (not presented here). This can be done simpler in the frame of the multiquadric method (MQ) [ 12].

Another approach, that is being developed for the FDM, involves high order finite difference schemes that are

specially constructed to deal with the boundary layer solution [16], [17].

PDE collocation at the boundary

To have the PDE to be satisfied at the boundar 3"one needs to extend the basis function space in the MQ by Nt, functions
for each PDE, where Nh is the number of boundary, nodes. It can be done by adding the layer of nodes adjacent to the

boundary and related MQ basis functions, thus allowing to add a set of equations obtained via collocation of the PDE
on the boundary.

solution of ID singular perturbation problem from [7] by multiquadric global basis function method [12], using
this strategy with 21 nodes, versus exact solution is shown in Fig.2fb) for e = 10-3; 41 nodes are enough for e = 10 -4



(not shown). The gain in the accuracy with this strategy is two to three orders compared to the original Kansa-MQ
method with 101 nodes[15].
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Figure 1: (a) Lid-driven cavity problem, Re = 3200. Comparison of horizontal velocity profiles (lines 1 to 4) for
numerical solution and experimental data (squares) by Koseff and Street (1984):1-NS, 2 - k - _ model, 3-RNS (2D),

4-RNS (3D); (b) FEow over a backward facing step, Re = 44,000(I32,000). Comparison of the horizontal velocity

profiles for the numerical solutions with RNS [ 10], k - 8 model [14] and experimental data (squares) [13] at x = 5.33.

Summary

Proposed higher accuracy solution methods are used in applications to 2D and 3D flows at high Reynolds number
and flows with thin boundary layer, and compared favorably with experimental data and asymptotic solutions (when

available): flow in channels, thermal and vibrational convection (Fig. 3, [ 18]), electrically conductive fluid flows under

strong magnetic fields etc. [10].
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Figure 2: (a) Residuals of numerical solution in the X-momentum equation at z = 0.5 for lid-driven cavity problem,
Re = 3,200 for the 2D NS solution and RNS solution on the same 81x81 mesh. Residuals are estimated by differ-

entiation of numerical solutions, using interpolating polynomials. The RNS residual is lower by one to two order

than the NS one; (b) ID problem with boundary layer: EUxx+ ut = 0, u(0) = 0, u(l) = 1, comparison of numerical
(multiquadric method. 21 nodes, strategy (iii) and exact u = ( 1 - e -qE)/(1 - e -I/E) solutions for e = l0 -a. Plot for x

in [0,0.1].

References

[1] G. I. SHISHKtN, J. Math. Anal. Appl., 208 (1997) 181-197.



V_ Vy V. P T A T |V|

(a)
(b)

Figure 3: Typical instantaneous 3D thermovibrational melt flow patterns for: (a) translational vibration at Og, Ra = O,

Ra,, = 7.25 - 104, Pr = 0.01, co = 100Hz, lateral vibration is applied along x-direction (horizontal): velocity compo-

nents Vx, Vy, Vz, pressure P, temperature T, temperature disturbance AT, and velocity module;

(b) circular polarized vibration, Ra = 7.25.103, Ray = 7.4- 106, Pr = 15, o_ = IOHz : velocity components Vx, Vz,

temperature T, concentration C, velocity module, and temperature disturbance AT.

[2] K. R. KOSEFF and R. L. STREET, Trans. ASME/Joumal of Fluids Engineering 106 (1984) 390-398.

[3] U. GHIA, K.N. GHIA and C. T. SHIN, J. Comp. Phys., 48 (1982) 387-411.

[4] S. S. KUTATELADZE et al., Int. J. Heat and Mass Transfer, 15 (1977) 193-202.

[5] V. I. POLEZHAEV et al., Lecture Notes in Physics, 90 (1978) 454-459.

[6] S. SUNDARESAN et al., Proc. of 16th ICNMFD Conf., C.H. Brunau, Ed., Lect. Notes Phys., 515 (1998) 231-236.

[7] Y.C. HON, Int. J. Appl. Sci. Comput., 6, No. 3 (1999).

[8] A. I. FEDOSEYEV, B. V. ALEXEEV, Contilttatm Models and Discrete Systems, Ed. by E. Inan and A. Markov,

World Scientific, London, 1998, 130-137.

[9] A.I. FEDOSEYEV and B.V. ALEXEEV, Proc. IMACS9& Advances in Scientific Computing and Modeling, Ed. by

S.K. Dey, J. Ziebarth. and M. Ferrandiz, University of Alicante, Spain, 1998, 158-163.

[10] A. I. FEDOSEYEV, Proc. oflSCFD-99 Conf, Ed. by G. Schmidt, Bremen, Germany; also CFD Journal (ac-

cepterS.

[11] R. L/SHNER, In: hzcompressible eomputational fluid dynamics, Ed. by M. D. Gunzberger and R. A. Nicolaides.

Cambridge Press. 1993, 267-294.

[12] E. J. KANSA, Comput. Math. Appiic, 19, No. 8/9 (1990) 127-161.

[13] J. KIM, S. J. KLINE, and J. P. JOHNSTON. ASME J. Fluids Engng., 102, 1980, 302-308.

[14] M. ZIJLEMA, A. SEGAL AND P. WESSELING, Report DUT-TWI-94-24, The Netherlands, 1994.

[15] A.I. FEDOSEYEV, M.J. FRIEDMAN, and E.J. KANSA, An Improved Multiquadric Method Algorithms for El-

liptic PDEs. IMACS 2000, University of Wisconsin, Milwaukee, Wisconsin, May 25-27, 2000.

[16] J.Y. CHoo, D.H. SCHULTZ, Computers & mathematics with applications. 27, No. 1 I, (1994).

[17] D.H. SCHULTZ and F.O. ILICASU, Proc. IMACS98, Advances in Scientific Computing and Modeling, Ed. by

S.K. Dey, J. Ziebarth, and M. Ferrandiz, University of Alicante, Spain, 1998, 1-6

[18] A.I. FEDOSEYEV and J.I.D. ALEXANDER, J.Cryst. Growth, (2000), to appear.

4



Computatio:nal Fluid Dynamics Journal (2001), (accepted).

Iterative Solution of Large Linear Systems for Unstructured Meshes with Preconditioning

by High Order Incomplete Decomposition

Alexander I. Fedoseyev, Oleg A. Bessonov*

Center for Microgravity and Materials Research,

University of Alabama in Huntsville:.Huqtsville, Alabama, U.S.A.
E-mail: alex @cmmr.uah.edu, http://uahtitan.uah.edulalexl

*Institute for Problems in Mechanics, Russian Academy of Sciences,
Moscow, RUSSIA. E-mail: bess@ipmnet.ru

Keywords: Navier - Stokes equations, Finite element method, Iterative solution, Preconditioning

Abstract

We present an efficient solution technique for large sparse nonsymmetric algebraic linear

systems, related to the coupled solution of incompressible viscous fluid flow equations. An

iterative solution technique with high order incomplete decomposition as preconditioning is used

in this method. A developed CNSPACK linear solver for flow problems on 2D/3D unstructured

meshes is briefly described. Analysis of the efficiency of the proposed approach is demonstrated

on 2D and 3D flow problems. Numerical experiments show that the computational complexity of

the proposed method appears to be O(N$/4).

Introduction

Numerical solution of incompressible viscous flow problems by the finite-element method leads

to large linear systems of equations with sparse non-symmetric matrices. For the Navier-Stokes

equations in primitive variables with the continuity equation, treated directly, the system of

related linear equations combines many unwanted properties of algebraic systems. It is non-

symmetric, not positive definite and has zero diagonals in rows related to the discretized

continuity equation. The advantage of the coupled solution is in the improved stability of the

numerical solution for stationao' flow at high Reynolds numbers. Also, much larger discrete time

steps for transient flow analysis can be used. The drawback of the coupled solution is that it is

expensive in terms of computer resources, such as memory and computation time.

Recent advances in iterative solution techniques resulted in more efficient solvers, based

on CGS and BiCGS [1,2] and GMRES methods [3,2]. A preconditioning technique can be used

to accelerate the convergence of iterative solution, thus resulting in dramatically fewer iterations,

typically 10 to 100 instead of the order of 1000 iterations without preconditioning.

Recurrent formulas have been published to construct a preconditioner for structured (3- or

5-diagonal) matrices [4]. Simple first order preconditioners are typically used for unstructured

matrices that are related to unstructured meshes for complicated domain geometry. The efficiency

of such preconditioning is low and, in a case of the incompressible Navier-Stokes equations,

solved with quadratic for velocity and linear for pressure finite elements, such a preconditioning

may result in a divergence of iterations. In [5] we proposed the high order preconditioners for

unstructured matrices, which improve convergence of the iterative solution process. In this paper,



we analyze the efficiency of this approach on 2D and 3D flow problems. Numerical experiments

show that the computational complexity of the proposed method appears to be 0(N5/4).

Problem formulation

The following are governing equations for viscous flow in closed domain G. The momentum

equation is ..

+ (uv)u - !_xu + Vp = o
3t Re

while the continuity equation is

(1)

div(U) = 0. (2)

Here U is velocity vector, p is pressure, and Re is the Reynolds number. We present the following

examples: (i) flow in a square cavity with driven lid; (ii) viscous flow around the system of

circular cylinders: (iii) a flow in ion-exchanger channel (Fig. 1), and (iv) flow in a 3D cavity (Fig.

2).

:÷!iiSii!iiiiiiii!!iiSii::::::::::::::::::::::::

:iiiiiiiiiiiiiiiiiflilili
(a) (b) (c)

Fig. 1' Test problems, meshes and flow patterns: (a) driven cavity, 2D, (b) flow around the system

of circular cylinders, and (c) flow in ion-exchanger channel.

Boundary conditions are: (i) velocity is equal to zero at the bottom and side walls, and a

horizontal component u of velocity is equal to 1 on a driven top lid; (ii,iii) inlet velocity profile

u=u(y), v=O is given at the left domain side, zero velocity on top and bottom, and at cylinder

surfaces, and p = 0 and "soft" boundaw conditions for velocity at the channel exit,at the right
side of the domain. Initial conditions are zero fields for all variables.

Solution method

We used the finite element method on 6-noded triangles with quadratic for velocity and linear for

pressure finite elements for 2D problems. A new regularization method for viscous flows at high



Reynoldsnumberswith trilinear interpolation for bothvelocity andpressurewasusedin the3D
driven cavity example[7,8] with ageometrycorrespondingto theexperiments[16].

ThediscretizedlinearalgebraicsystemsaresolvedusingtheCGS-typeiterativemethod
with preconditioningbythe incompletedecompositionof theoriginal matrix. Comparingthe
CGSandGMRES methods[1, 3] in ourexamples,we found thatbothmethodsconvergencewell.
if a goodpreconditioneris used.TheCGS methodneedscomparablylessmemoryto storeonly
eightwork vectors. .. ..

To reduce the memory requirements, a compact storage scheme for matrices was used.

We stored only the nonzero entries. The incomplete decomposition (ID) was a product of

triangular and diagonal matrices, P - LDU. To avoid a diagonal pivot degeneration we use the

Kershaw diagonal modification [6]. If the value of diagonal element was small, i.e.

lai_l< a = _, the diagonal was replaced by a. Here _ and _are the maximum magnitudes of

row and column elements, and 2 -_is a machine precision (t bits in mantissa, see details in [6]).

Fig.2: 3D driven cavity problem: mesh and horizontal velocity component is shown (dark gray

color shows larger velocity component magnitude).

For the first order ID, the matrix P has the same non-zero entry pattern as the original matrix. For

a second order or higher ID. matrix P has one or more additional entries near the locations of the

non-zero matrix entries, where the original matrix entries are zeros.

Numerical experiments

The computations were done on the SGI 02 machine for different mesh resolutions and different

incomplete decomposition orders. Iteration termination criteria was the value of the module of the

residual: r< 10 6 , 10 .8 , or 1012. The solution times for a driven cavity, problem were compared

for different solution methods (Fig. 3).

The results of our numerical experiments can be summarized as follows:



(1) The iterativesolutionwithout apreconditioning,ID = 0, is time-expensive,thenumberof
iterationsis of theorderof thenumberof unknowns.Thememoryrequirementsaresmallest.

(2) A simple incompletedecompositionof thefirst order,ID = 1,canresult in thedivergenceof
the iterations.That maybea reason,why this approachis not widely usedyet.

(3)The incompletedecompositionof thesecondor third ordercanreducethe numberof
iterationsdramatically,e.g.for N up to 10,000 the number of iteration did not exceed 200,

and, for most cases, just 50 iterations were enough for convergence. The memory,

requirements are about twice as high as for ID - 0.

_J

e_

1000 IOaOC. 102(200
N

Fig.3: Solution time versus number of unknowns N for 2D and 3D driven cavity problem.

comparison of different software packages. FRONTAL - direct solution by frontal method:

CNSPACK-2D- solution with proposed method, P2-P1 finite elements, matrices stored in

double precision, incomplete decomposition of the second order; Y12M - solution with

Y12M sparse matrix solver package: CNSPACK-3D (lower curve) - solution of 3D

problem: matrices are stored in single precision, a first order incomplete decomposition is
_ '_/4

used. Theoretical asymptotics for direct solution and proposed method, the N', and N

lines, are plotted for comparison.

(4) A new regularization approach for viscous flows, that works well with thin boundary layers

[7,8], was used in our tests for 3D cavity problem. It resulted in a much faster solution

convergence. For N up to 300,000 the number of iterations to converge was of the order of 30

to 50. And in this case, the first order incomplete decomposition worked quite well.

(5) We compared the solution time for the same linear system by different methods: direct

solution by frontal method [5], iterative solution with YI2M sparse matrix package [I5] and

by our CNSPACK software (Fig. 3). We have been unable to use the SPARSKIT [I I] and

SPARSE [12] solvers, as those failed for zero matrix diagonal elements.



(6) Convergencerateof the proposedmethoddoesnotreducewith increasingtheReynolds
numberRe (from 10 to 1000). We observed even faster convergence for larger Re.

(7) Proposed method can solve the linear system with a high accuracy, much higher than obtained

by a direct solution.

(8) The node/equation numbering is of great importance for the rate of convergence [ 13, 14]. We

found that the optimal node or equation renumbering is quite necessary for unstructured

meshes, and ID = 2 should be used for fast convergence.

(9) It appears that the computational complexity of the proposed method is O(N 5/4) (see Fig. 3).

Aspects of the efficiency of the method on superscalar pipelined microprocessors and parallel

architectures were considered. We found the solution time can be reduced by a factor of three by

using special optimization techniques for a superscalar pipelined architecture.

Proposed method is used in FEMINA/3D code that is used for solving 2D/3D incompressible

viscous flows, 3D thermal convection, magneto-hydrodynamics flows, and 3D thermal

vibrational convection in Bridgman crystal growth configurations [7-10]. If the number of

unknowns is in the range of N = 50,000 to 500,000, the problems are Solved on a low-end SGI

workstation or PC, using our FEMINA/3D code (for N of the order of 106, the supercomputer is

needed). For example, we solve large 3D time-dependent problems of thermo-vibrational

convection with 300,000 unknowns on the low-end SGI 02 workstation within a couple of hours

[81,[9].

Conclusions

We have presented an efficient solution technique for large sparse nonsymmetric algebraic linear

systems for coupled solution of incompressible viscous flow equations. An iterative solution

technique with high order incomplete decomposition as preconditioning is used in this method.

Analysis of the efficiency of this proposed approach is demonstrated on 2D and 3D flow

problems. Numerical experiments show that the computational complexity of the proposed

method appears to be O(NSJ4).
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Abstract

The RNS method was used to solve viscous flow problems at high Reynolds numbers with a thin boundary layer.
This method is related to the generalized hydrodynamic equations proposed by Alexeev (1994). It can be interpreted
as a regularization of the Navier-Stokes equations. Numerical solutions using this approach compare favorably with
experimental data. The method is discussed and numerical solutions are compared with the experimental data for

a 3D driven cavity flow at Re = 3200 and 10,000, 2D backward facing step flow at Re = 44,000, 2D channel flow
at Re number up to 10 6, and a 3D thermal convection in a cylinder at Ra = 1000 to 150,000. Comparison with the
analytical asymptotic solution is provided for a thermal convection, in the electrically conducting fluid suppressed by
a strong magnetic field at Hartman numbers Ha up to 20,000. This proposed model is nora turbulence model, and no
additional equations are introduced.

Keywords: High Reynolds number flows, Alexeev equations, Regularization, Finite element method.

1 Introduction

Difficulties with the numerical solutions of Navier-Stokes (NS) equations for high Re number flows have usually been

referenced to insufficient mesh resolution, complicated flow physics, turbulence, etc. In series of papers. Shishkin et al.

( 1995-1997, see e.g. [ I ]) demonstrated theoretically that grid methods perform poorly when dealing with the boundary

layer and provided an estimation for numerical solution error as O(1) for uniform meshes [ 1]. As a remedy for these

difficulties, the construction of special meshes was proposed, with more optimistic error estimation, as O(ht/m), h is

the mesh size. with m = 7 or more. During last decades the failure of numerical solutions to obtain good agreement

with experimental data confirms Shishkin estimates (lid-driven cavity flow: experiments [2] versus simulations [3];

thermal convection in a vertical slot: experiments [4] versus simulations [5], etc.). Successful results implementing

Shishkin-type strategy are obtained in [6]. The boundary layer thickness, which is not known in advance, is used, to
construct Shishkin mesh. Meshless methods have similar drawbacks [7].

We have developed an alternate approach, that is more accurate, less mesh-dependent and can be interpreted as a

regularization of the Navier-Stokes equations. It is based on the mathematical model associated with the generalized

hydrodynamic equations by Alexeev [8], [9]. The numerical solutions agree well with the experimental measurements

for a set of flow problems at high Reynolds number and for flows with thin boundary layer [10], [1 i], [12], [13],

[14][ 15]. This is not a turbulence model, and no additional equations are introduced.

The model was successfully compared to: (1) 3D driven cavity flow data by Koseff and Street ( ! 982) at Re = 3200

and Re = 10,000: (2) 2D backward facing step flow by Kim et al. (1980) at Re = 44,000; (3) 3D thermal convection

in a cylinder at Ra = 1000 to 150,000; and (4) asymptotic solution for a thermal convection in the semiconductor melt

suppressed by the magnetic field at Hartman numbers Ha up to Ha = 20,000. Numerical results for 2D channel flow

at Re number up to 106 are also presented.

2 A regularization approach to solving Navier-Stokes equations

Governing equations. To consider a flow of incompressible viscous fluid, in a closed 2D or 3D domain £L Navier-

Stokes momentum and continuity equations are:

Ov
cq--"t-+ (VV)V - Re-IV2V+ Vp - F = 0 (1)
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Figure 1: Lid-driven cavity problem, Re = 3200: (a) horizontal velocity profiles (!-4) for numerical solution (solid

and dashed lines): I-NS, 2 - standard k - e model, 3-RNS (2D), 4-RNS (3D); squares - experimental data by Koseff

and Street (I 982) in the symmetry plane Y = 1.5. (b) residuals of numerical solution in the momentum equation (1)

for the 2D NS and RNS solutions at x = 0.5. Residuals are estimated by differentiation of numerical solutions, using

interpolating polynomials. (c) Re = 104. numerical horizontal velocity profiles (1-3) and experimental data (triangles).
A k - e model solution is obtained with commercial code CFD2000.

V. V = 0 (2)

where Re = VoL/v is the Reynolds number. Vo is the velocity scale. L is the hydrodynamic length scale, v is the
kinematic viscosity, and F is a body force• In the case of thermal convection the body force is F = GrRe-I. O.eg

(Boussinesq approximation), where ® is a nondimensional temperature, Gr is the Grashoff number and e_ is the unit

vector in the direction of gravity. The energy equation is:

80

8-'_+ (VV)0 = Pr-_Re-_V20 (3)

where 0 represents nondimensional temperature, scaled by O = (T - T,,,ta)/AT with AT = Th,, - _,,ld. The Prandtl.
Grashoff and Rayleigh numbers are respectively Pr = v/k, Gr = Ra/Pr, and Ra = _ATgL3k-lv -I , where _, g, k are

the coefficients of thermal expansion, gravitational acceleration, and of thermodiffusivity.

We have analyzed the generalized hydrodynamic equation, proposed in [8] (a review in [9]), for the case of incom-

pressible viscous flow and kept only a few main order terms, spatialflucntations, in the continuity equation. This may

be interpreted as a regularization of the Navier-Stokes equations.
A proposed regularization involves modifying the continuity equation (2) to become

V.V ='t'V-(Vp- F) (4)

where z" is a small regularization parameter. For x" _ 0. eq. (4) approaches the continuity equation (2). The boundary

condition for pressure on a wall is

(Vp - F). n = 0, (5)

where n is a unit vector normal to the wall. Equations (4) and (5) present the basis of our method, which takes into

account only a few of many additional terms of the generalized hydrodynamic equations, called fluctuations (temporal

and spatial), in [8}. Equation (5) is a condition of absence of the fluctuations on walls, according to [8].

Preliminary results with a more complicated model are presented in [10] and [I 1]. Further numerical experiments

have shown that satisfactory results can be obtained with the simpler model presented above [12]. Numerical solutions

of eqs. ( I ). (3), and (4), called regularized Navier-Stokes equations (RNS), with the boundary condition (5), give a

better agreement with the experimental measurements for high Reynolds number flows than the traditional solution of

Navier-Stokes eqs. ( 1) and (2), (NS), with the finite element method (FEM).

Note that numerical formulations, containing extra terms in the momentum and continuity equations, have been

proposed in the frame of kinetically consistent numerical schemes, developed by Elizarova and Chetverushkin [17],

[18]. The .justification of introducing extra terms into hydrodynamic equations is discussed in [19} from a physical
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RNS solution, k - _:model [25], and the experimental data (squares) [23} at x = 5.33; (b) 2D channel flow, horizontal

velocity profiles U(z) at x = 2.5. computed with RNS Re = 5.103 (laminar and turbulent), 104, 105 and 106.

kinetics viewpoint. The pressure Laplacian and other terms in the discretized continuity equation, have also been
proposed by Lbhner as a result of consistent treatment of the time-advancement for the continuity eq. (2) [ i 6}.

Further. eqs. (I). (3), and (4) with the boundary condition (5) are treated as mathematical model, having a control

(regularization) parameter "t*. This regularization parameter z* is expressed dimensionally as x* = 'tL-I V0, where "t is

time. The dimension of't'v is a length squared. We introduce the regularization length scale I with 12 = rv and rewrite

z" as z" = 12L-2Re = K. Re, where K = 12/L _. The optimal value of z (or 1) is not known in advance. We found that.

for problems with smooth boundary conditions, the numerical solution only slightly depends on the value of z'. with

"t" in the range of 10 -8 to 10 -2. This proposed regularization has an additional useful feature for the FEM. It uses the

same order finite element approximation for velocity and pressure for RNS.

3 Numerical experiments with RNS

In this section, we present the numerical results of a few flow problems, and compare these with experimental data.

The FEM was used to discretize the governing equations. Algebraic equations for momentum and continuity were

solved simultaneously using the iterative CNSPACK solver [20], with preconditioning by a high order incomplete

decomposition. Iteration termination criterion was a convergence of relative residuals to 10 -8 (or I 0-12).

Driven cavity problem. Shown in Fig. I are the numerical solutions, with RNS employed [I0],{12], against

the 2D and 3D driven cavity flow data at Re = 3.200 and 10,000 [2], and results by other methods. We used 8]x81

node uniform triangular mesh for the RNS. The same mesh, with quadratic for velocity and linear for pressure finite

elements, was used in a standard FEM solution of eqs. (1.2). These results are labeled as NS in Fig. I(a) and ](c).
The RNS model parameter, z" (or/2 in 12L-2), was varied to match one of the experimental velocity profiles. A

value. [2L-2 _ 1.5.10 --s, resulted in good agreement for all the velocity profiles and both flow regimes, Re = 3.200

and 10.000. To our surprise, the dimensional value of l __ 0.58ram was a good approximation to the experimentally

observed "Kolmogorov microscale" lexp "" 0.5ram (see [2}, p. 398).
For 3D flow we solved the RNS at Re = 3200 for half of the cavity with a mesh of 41x41x33 nodes (221,892

unknowns), refined near the walls. The symmetry condition was used on the vertical symmetry plane y = 1.5. The

same 2D value ofK = 1.5.10 -5 was used in the 3D computations, the modeling results are presented in Fig. 1 as well.

One can see that the velocities obtained for both the 2D and 3D profiles are close to the experimental data. except in

one region. We did not obtain the 3D stationary solution at Re = 10-L The solution went unstationary at Re >_ 8,450.

According to Baggett and Trefethen [22], the stationary solution exists, but the basin of attraction of this solution may

be extraordinarily narrow, having a width of O(Re c_) for some ot < - 1.

Mass conservation in the continuity equation was thoroughly analyzed. The local values ofdivV for the numerical
solution were examined. The conclusion was thai a numerical solution for the RNS model has the same order of error

in the mass conservation as the NS solution with the same number of mesh nodes [ 12].



(a)Temperature (b) AT =TI-T2 versus Ra

Figure 3: (a) Thermal convection in a 3D differentially heated cylinder; (b) comparison of the temperature difference

AT. versus Ra with the experimental data [27] and finite-volume computations: squares - experimental data, solid line

- numerical results for perfect wall conductivity [26], triangles - RNS results; dashed line - numerical results when

the steel properties for the wall conductivity have been used (adjoint problem);here AT is a temperature difference

between locations marked as I and 2 in (a). Both the NS and RNS solutions are nearly identical here.

The residuals of numerical solutions in the momentum equation (1) are presented in Fig. lb. It shows one to two
order reductions for the RNS solution residual in the boundary layer, compared to the' NS solution residual.

Flow over a backward facing step. The numerical results for a 2D flow over a backward facing step of height

H, H = L/3 (L is a channel height) at Re = 4.4- 104 (or ReL = 1.32. 105 in [24]) were obtained and compared with

the experimental measurements of [23]. We used a I 10x60 mesh, refined near the walls, and started the computations

at a low Reynolds number• We raised Re in small increments until reaching 44,000. Fig. 2(a) presents the computed

velocity profile, at x = 5.33H (x = 0 at the edge of the step), and the experimental mean velocity measurements [23].

The RNS model output satisfactorily agrees with the experimental data for both the velocity profile and the recircu-

lation zone length X,. We computed X,/H = 7.50. while Xe/_r/H ,m 7 +0.5 was obtained experimentally. The value of

"c"used in the computations was in the range of 10--" to 10 -4. This did not noticeably influence the results. For smaller

values of "c', it was more difficult to reach the steady state solution at Re = 44,000; more and smaller increments in

Re had tobe used. If the increments in the Re number were large, the flow pattern bifurcated to an unsteady flow. with

vortices periodically originating from the recirculation zone and flowing downstream.
The solution with a standard k - E model sho_vs the velocity profile at x = 5.33 that has no backward flow. A

standard k - E model underpredicts the recirculation zone length Xr by a substantial amount, 20-25% according to

[24], where more sophisticated turbulence models have been proposed for this problem•

Flow in a 2D channel, of height H = I and length L = 4, was the subject of a few experiments with the RNS at

Reynolds numbers Re = 5- 103, 104. 105 and 106. An 81 x 100 mesh refined near the walls was used. Inlet flow profiles
were (i) U = 1, and (ii) U = 6z( 1 - z). We were obtained both parabolic and "turbulent" flow profiles for Re up to I0 _.

depending on the inlet flow conditions and the value of'_'. To obtain a "'turbulent" flow profile at Re = 5,000, with the

inlet condition (ii), we started with z_ = 0.01, and were then able to keep this "turbulent" profile type at reduced "t',

down to l0 -4 (Fig. 2b). The boundary layer thickness is about 8 ,-, Re-½ (obtained graphically from Fig. 2b).

3D Thermal convection in a dirferentiaily heated horizontal cylinder• Alinear temperature profile is given

assumed on a cylinder wall. Experimental data by Bogatirev et al. [27] and finite volume simulations by Bessonov
[26] are used for comparison at Rayleigh numbers in the range of 103 to 1.2.105, Pr = 0.9 (Fig. 3a). For the linear

temperature distribution on a cylinder wall. we obtained good agreement with the numerical results [26]. We used

a 17.4357 node hexaedral mesh refined near the walls. Agreement with the experimental data was not good for

Ra > 2000 (solid line in Fig. 3b). Therefore computations were done for a real. finite wall conductivity [26]. The

thermodiffusivity data for stainless steel was used. and the adjoint problem was solved. Thereby, agreement with the

experimental data has been significantly improved (Fig. 3b, dashed line). The value of "c* used was 10 -7 to 10 -3,

which did not noticeably affect the RNS results•

Magnetic field suppression of the semiconductor melt flow, modeling with RNS, is considered in [ 13] and [ ] 4].

The application of magnetic fields is a promising approach for reducing convection during directional solidification

of electrically conductive melts. Current technology allows for experiments using very strong static fields, for which

nearly convection free segregation is expected in melts exposed to stabitizin_ temperature gradients (vertical Brid*gman
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vectors. Predicted theoretical asymptotic U,_x ",_Ha -2 is observed starting from B = 0.5 Tesla (Ha = 220).

method) [28]. The governing equations solved for this problem are eqs. (l), (3), and (4), where F. the body force due

to the magnetic field (Lorenz force), is given by

F = PrHa2[(V × e_) × eB]. (6)

Here F=(Pr(Ha)2U, 0) for the 2D case of a vertical magnetic field and U is the horizontal component of the velocity.

The Hartmann number, given by Ha = LBo_v_, is in the range of Ha = 100 to l04, for the materials and magnetic

fields under investigation. Here 9.¢_ are the density and electrical conductivity, B0 is the magnetic field intensity, and

e8 is the unit vector in the direction of the magnetic field.

The computations are difficult because of the thin boundary layer, although the velocity of the generated flows is

extremely low, Re _ 10- _ to ]0 -6. A high value of the Hartmann number results in a relatively small coefficient at the

highest derivative of the velocity in the momentum equation. Solutions of such problems exhibit thin boundary layers

of thickness 5 ,-, Ha -I, along with "equivalent" Reynolds number Re_q,. ,,, Ha", Reeq,. = 4.104 for B=0.5 Tesla. and

Reeqv = 4.10 8 for B=50 Tesla. Some of the results for 2D models are shown in Fig. 4. The RNS numerical solution

is rather smooth even for a very thin boundary layer, with thickness _ _ 10-'; (Ha = 2.10'_). Other methods tested in

[ 13], [ 14] (including industrial code) did not provide acceptable results or failed for Ha > 100.

Conclusions

The RNS method was review with applications to 2D and 3D flows at high Reynolds number and flows with thin

boundary layers. The numerical results compared favorably with experimental data for driven cavity flow, flows in

channels, thermal convection, and asymptotic solutions for electrically conductive fluid flows under strong magnetic

fields. The RNS method is used for modeling 3D thermo-vibrational convection in Bridgman melt configurations [ 15].

Similar ideas have been used successfully to improve the accuracy of the meshless multiquadric radial-basis function

methods [29], [30].
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